
A Practical Guide to
Building GenAI Apps on
a PostgreSQL-Compatible
Database

SOLUTION BRIEF

This guide shares basic AI concepts, architectural considerations, and access to hands-on tutorials
that demonstrate how to build your first GenAI application on various platforms.

In this solution brief you will discover:
	 How YugabyteDB’s powerful vector indexing capabilities support vector search through the
	 pgvector extension

	 The unique distributed architecture of YugabyteDB

	 How YugabyteDB’s distributed design enhances scalability and performance for AI workloads

3

4

5

6

7

8

9

10

11

12

13

14

An Introduction to Vector Embeddings

Vector Databases vs Traditional Databases

Similarity Searches and Nearest Neighbors

Vector Embeddings in Practice

Introducing YugabyteDB

The pgvector Extension in YugabyteDB

YugabyteDB’s Distributed Vector Engine

Retrieval-Augmented Generation (RAG)

Accelerate Vector Search with YugabyteDB’s MCP Server

End-to-End AI Workflows with YugabyteDB

Scalability and Resilience

Summary

Table of Contents

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 3

An Introduction to Vector
Embeddings

Vector search is crucial for AI applications. It enables efficient similarity
searches in high-dimensional data, which is common in generative AI
models.

Vector embeddings transform unstructured data—like text, images,
or audio—into high-dimensional numeric arrays that capture semantic
meaning. This allows systems to perform operations based on meaning,
not just exact matches.

Vector embeddings are foundational to modern applications that require
semantic search, recommendations, and generative AI.

DOG CAR

CAT

X

Explore ultra-resilient, scalable vector search with YugabyteDB

https://www.yugabyte.com/
https://www.youtube.com/live/4Gs40ezatTs?feature=shared

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 4

Vector Databases vs
Traditional Databases
Traditional databases excel at exact-match lookups using structured
filters. By contrast, vector databases enable similarity searches over
embeddings, finding items that are close in meaning without matching
exact words or values. This unlocks use cases like natural language
search and personalized recommendations.

The pgvector PostgreSQL extension provides vector similarity search
capabilities (without the need for a dedicated vector database) and
allows you to store and query vectors for performing similarity searches.

query

SELECT * FROM
items
WHERE color’s = ‘green;

SQL WHERE
Filtering

Radius-based
Nearest Neighbor Search

Learn more about the pg_vector extension

https://www.yugabyte.com/
https://docs.yugabyte.com/preview/explore/ysql-language-features/pg-extensions/extension-pgvector/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 5

Chicken

Wolf

Dog

Cat

Banana

[0.34, 2.35, 8.34, ...]
 300 dimensions

Apple
Query:
Ki�en

Vector Search

Similarity Searches and
Nearest Neighbors
Similarity searches identify vectors closest to a query vector, using
distance functions such as cosine similarity or Euclidean distance (L2).

Approximate nearest neighbor (ANN) algorithms like HNSW make this
process scalable to billions of vectors, while maintaining sub-second
query times.

4

3

2

1

1 2 3 4 5 6 7 8 9

Vector A

Vector C

Cosine Distance

x

y

Euclidean/L2 Distance

Various distance functions

PostgreSQL pgvector: getting started and scaling

Explore similarity search using Google Vertex AI

Explore similarity search using Azure OpenAI

https://www.yugabyte.com/
https://www.yugabyte.com/blog/postgresql-pgvector-getting-started/
https://docs.yugabyte.com/preview/tutorials/ai/google-vertex-ai/
https://docs.yugabyte.com/preview/tutorials/ai/azure-openai/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 6

Vector Embeddings
in Practice
The typical development lifecycle for GenAI applications starts by
passing, at data load time, a collection of data (documents, images,
sound clips, etc.) through an embedding model (like OpenAI, Ollama, or
Hugging Face), which outputs a numerical vector for each item.

These vectors are stored in a database with related metadata (like date,
type, category). Later, when a result is needed at runtime, data items
most relevant to a user’s query are efficiently retrieved and passed to an
LLM for use in formulating a response.

Use Ollama to generate text embeddings

Use LocalAI to create an interactive query interface

https://www.yugabyte.com/
https://docs.yugabyte.com/preview/tutorials/ai/ai-ollama/
https://docs.yugabyte.com/preview/tutorials/ai/ai-localai/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 7

Introducing YugabyteDB
Traditional databases struggle with scaling vector workloads, making
distributed databases like YugabyteDB essential.

PostgreSQL-compatible distributed YugabyteDB delivers strong
consistency, ultra-resilience, and linear scalability. It seamlessly blends
relational and vector workloads, making it a powerful foundation for AI-
driven applications that require both traditional transactional operations
and similarity search.

Built-in PostgreSQL data sync

Supports multiple indexing algorithms
(e.g., IVFFlat, HNSW

PostgreSQL’s full ACID backup, and
security

Higher accuracy and often outperforms
in QPS, especially with HNSW indexing

More economical at scale, leverages
existing PostgreSQL infrastructure

Seamless integration with PostgreSQL
data and familiar tools

Advantages
of Postgres as a Vector Database

API-based, prone to desync

May offer proprietary indexing
algorithms

Lack full database features (ACID
compliance, row-level security)

Faster query times, but with potential
network latency

More cost-effective for smaller,
proof-of-concept (POC projects

Requires additional effort for data
synchronization and management

Disadvantages
of a Standalone Database

Explore YugabyteDB’s Vector indexing architecture

https://www.yugabyte.com/
https://www.yugabyte.com/blog/yugabytedb-vector-indexing-architecture/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 8

The pgvector Extension
in YugabyteDB
YugabyteDB integrates the popular pgvector extension, enabling
developers to store and index vectors directly in SQL tables.

Yugabyte provides an extensible indexing framework designed to support
the seamless integration of state-of-the-art vector indexing libraries and
algorithms, augmenting the capabilities offered by pgvector.
This allows you to create HNSW indexes on vector columns and combine
similarity scoring with WHERE filters for rich hybrid queries.

sql
CopyEdit
CREATE TABLE docs (
 id SERIAL PRIMARY KEY,
 embedding VECTOR(1536),
 category TEXT
);
CREATE INDEX ON docs USING hnsw (embedding
vector_l2_ops)
 WITH (m=16, ef_construction=64);

Discover YugabyteDB’s extensible Vector search

https://www.yugabyte.com/
https://www.yugabyte.com/blog/agentic-ai-and-extensible-vector-search/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 9

YugabyteDB’s Distributed
Vector Engine
YugabyteDB leverages USearch for approximate nearest neighbor search
alongside a multi-level storage engine (LSM) that keeps recent data in
memory and moves older data to disk.

This architecture provides ultra-low latency for fresh data, massive scale,
and resilience through replication.

YugabyteDB features an extensible indexing framework that supports
the integration of state-of-the-art vector indexing libraries like USearch,
HNSWLib, and Faiss. This ensures that applications can adapt to evolving
vector search requirements and incorporate the latest algorithms.

Learn how to architect apps for ultra-resilience with YugabyteDB

https://www.yugabyte.com/
https://info.yugabyte.com/white-paper-architecting-applications-for-ultra-resilience?

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 10

Retrieval-Augmented
Generation (RAG)
RAG combines large language models (LLM) with external knowledge
sources to produce more accurate and context-aware responses.

In RAG architectures, embeddings stored in YugabyteDB are retrieved
based on similarity to an input query, then fed into an LLM to produce
context-aware answers. This approach is essential for building AI copilots
and enterprise search solutions that produce answers based on your
private data.

Build a Retrieval-Augmented Generation (RAG) pipeline with YugabyteDB

https://www.yugabyte.com/
https://docs.yugabyte.com/preview/tutorials/ai/hello-rag/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 11

Accelerate Vector Search
with YugabyteDB’s MCP
Server
While vectors and RAG enable AI LLMs to utilize pre-loaded data, MCP
Servers enable AI LLMs to directly access live data.

MCP Servers can enable AI LLMs to take action via direct access to live
services. They are the glue that enables AI LLMs to become flexible
“agents” with access to multiple data sources and services.
While an MCP-based approach typically executes slower, consumes more
compute resources, and has less result predictability, it gives the LLM
more power and yields greater flexibility.

Yugabyte’s MCP Server accelerates AI application development providing
AI LLMs live, direct access to massive datasets, yielding real-time,
intelligent insights.

Explore the YugabyteDB MCP Server

https://www.yugabyte.com/
https://www.yugabyte.com/blog/yugabytedb-mcp-server/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 12

End-to-End AI Workflows
with YugabyteDB
YugabyteDB fits naturally into orchestrated AI pipelines.

Tools like n8n can automate ingesting data, generating embeddings,
storing vectors, and querying them alongside LLMs such as Ollama
(local) or Vertex AI (cloud). This creates a complete stack for
production-grade AI systems.

Explore end-to-end AI workflows using n8n and YugabyteDB

https://www.yugabyte.com/
https://www.yugabyte.com/blog/ai-workflows-using-n8n-and-yugabytedb/

Building GenAI Apps on a PostgreSQL-Compatible Database Solution Brief 13

Scalability and Resilience
YugabyteDB’s auto-sharded architecture supports hundreds of millions of
vectors with active-active replication across global regions.

Architecture that supports 1 billion vectors and an active AI roadmap
ensures that YugabyteDB evolves alongside the rapidly advancing AI
ecosystem.

Learn how to scale transactions with YugabyteDB

https://www.yugabyte.com/
https://docs.yugabyte.com/preview/explore/linear-scalability/scaling-transactions/

© 2025 YUGABYTE, INC. All rights reserved.
For additional information contact a YugabyteDB
expert at yugabyte.com/contact.

FOLLOW US

Next Steps:

	 Get started with YugabyteDB for free

	 Try building your own pipeline with YugabyteDB, pgvector, 	
	 and a local or cloud LLM

	 Explore AI tutorials or learn more about
	 architecting GenAI and RAG apps with YugabyteDB

	 Join the YugabyteDB open source community
	 and explore the power of AI-ready distributed Postgres

Summary
As AI continues to advance, databases will need to integrate
more sophisticated vector indexing techniques and support for
emerging AI frameworks. YugabyteDB’s extensible architecture
positions it well for the future.

As you progress on your AI journey, follow these best
distributed database practices:

–	 Choose the right indexing algorithm: Select algorithms like
	 HNSW for efficient query performance

–	 Monitor and maintain distributed clusters: Regularly check
	 cluster health and leader placement

–	 Optimize data distribution: Use geo-partitioning for data
	 locality and compliance

https://www.yugabyte.com/contact/
https://www.yugabyte.com/
https://github.com/yugabyte/yugabyte-db
https://communityinviter.com/apps/yugabyte-db/register
https://twitter.com/yugabyte
https://www.linkedin.com/company/yugabyte
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.reddit.com/r/YugabyteDB/
https://www.twitch.tv/yugabytedb

