Full Compactions in YugabyteDB & How to Schedule Them

John Meehan Friday, Jan 27, 2023

Layered architecture of YugabyteDB

Storage layer of YugabyteDB

Yugabyte Query Layer (YQL) **YSQLAPI** YCQL API Pluggable Query Engine **DocDB Document Store** Distributed Raft Consensus Sharding & Load Transaction Balancing Replication Manager & MVCC Document Storage Layer Custom RocksDB Storage Engine

Storage layer of YugabyteDB

Yugabyte Query Layer (YQL) **YSQLAPI** YCQL API Pluggable Query Engine **DocDB Document Store** Distributed Raft Consensus Sharding & Load Transaction Balancing Replication Manager & MVCC Document Storage Layer Custom RocksDB Storage Engine

Writing to DocDB

Writing to DocDB

Background Compactions

Universal compactions in DocDB

Universal compactions in DocDB

Combines smaller files into one larger file, garbage collecting any deleted/expired data

Algorithm 1: Size amplification

- Looks for *N* consecutive files such that the size of the first is less than **half** the combined size of the other *N*-1
 - i.e. size amplification threshold = 2x

size amplification ratio = (size(R_N) + size(R_{N-1}) + ... size(R_2)) / size(R_1)

(Size Amplification Compaction Triggers)

Algorithm 2: Read amplification

- Looks for at least [min merge width] files (as many as possible) such that the combined size of the latter N-1 files are less than [size ratio threshold] from the first file's size
 - Default min merge width = 4 (rocksdb_universal_min_merge_width = 4)
 - Default size ratio threshold = 120% (rocksdb_universal_compaction_size_ratio = 20)

Compaction prioritization

- Shared set of resources (CPU/IO) for all compactions in a TServer
- Managed by a priority thread pool
 - Max threads scale with # of CPUs
- Priorities (in general):
 - Flushes > compactions (if same pool is used)
 - Small compactions > large ones
 - Background compactions > full compactions

Background compaction TServer flags

- rocksdb_max_background_compactions
 - Maximum number of simultaneous running compactions allowed per TServer
 - Default: -1 / auto (scales per CPU)
- rocksdb_compact_flush_rate_limit_bytes_per_sec
 - The write rate limit for flushes and compactions (per TServer by default)
 - Default: 1 GB
- rocksdb_compaction_size_threshold_bytes
 - Threshold beyond which a compaction is considered "large"
 - Default: 1 GB
- sst_files_soft_limit / sst_files_hard_limit
 - The soft and hard limits of the number of SSTs allowed per tablet
 (i.e. if reached, the tablet is behind on compactions!)
 - Writes will be throttled when the soft limit is reached, and stopped at the hard limit
 - Default: 24 / 48

Motivation

Example large tablet after many compactions

Example large tablet after many compactions

Times when background compactions may not be enough

Update- or Delete- Heavy Workloads

- Older data versions or deleted data remain in files for extended periods of time
- Read and space amplification

TTL (Time-To-Live) Workloads

 Older data expires over time, and remains in large files for extended periods of time

Deletion Compliance

Deleted data must be removed from the system by a certain date

Example table

```
CREATE TABLE example (
   pk1 bigint NOT NULL,
   c2 varchar(255),
   c3 varchar(255),
   c4 varchar(255),
   c5 varchar(255),
   PRIMARY KEY (id1));
```

```
pk1 (PK) c2 (varchar) c3 (varchar) c4 (varchar) c5 (varchar)
```


Tuple deletion

DELETE FROM example WHERE pk1 = 1;

Tuple deletion

DELETE FROM example WHERE pk1 >= 500000 AND pk1 < 700000;

Default TTL (Time-to-Live)

ALTER TABLE example WITH default_time_to_live = 10*24*60*60; // 10 days

Tuples that have expired

After 20 days of INSERTs

SST1

SST2

3
4
5

Default TTL (Time-to-Live)

ALTER TABLE example WITH default time to live = 10*24*60*60; // 10 days Tuples that have expired After 20 days of INSERTs SST2 **SOLUTION: Full Compaction! After Full Compaction** SST6

Scheduled Full Compactions

Full compactions

Compaction that includes all SSTs for a tablet

- All files will be compacted into one single file
- Iterates through all data items of all files, ignores deleted/expired data

Resources required (same as background compactions)

- CPU cycles on threads dedicated to compactions (same thresholds apply)
- Disk IO for copying to a new file
- Disk space for temporary copy of all live data in tablet (capped if tablet splitting enabled)
- NO LOCKS REQUIRED

How to use scheduled full compactions (TServer flags)

Compaction Frequency (scheduled_full_compaction_frequency_hours)

- Upper bound for how frequently full compaction should be run
- Default value: 0 (i.e. feature turned off)
- Recommended values:
 - Every 30 days (720 hours), or every 2 weeks (336 hours)
 - Not less than every 7 days (168 hours)

Jitter Factor (scheduled_full_compaction_jitter_factor_percentage)

- Determines the "jitter" introduced into the scheduling
- Reduces likelihood of many tablets scheduled simultaneously
- Default value: 33 (recommended)
 - i.e. 33% of the frequency of schedule is allotted for jitter.
 - Example: if compactions are scheduled every 30 days with 33% jitter, each tablet
 will be scheduled for compaction pseudorandomly every 20 to 30 days

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

- 1 Tablet 1 Full Compaction
- 2 Tablet 2 Full Compaction
- 3 Tablet 3 Full Compaction

Full Compaction Frequency: 30 days

Jitter Factor Percentage: 33%

Demo

Future feature improvements

Auto-trigger full compactions when needed

Automatically improve the performance of some range queries
 via a full compaction when needed

Specify off-peak "preferred" compaction times

Schedule more full compactions at workload off-peak hours/days

Client-side full compaction status reporting/monitoring

Improved visibility into full compaction status

Thank You

Join us on Slack: yugabyte.com/slack (#yftt channel)

Star us on Github: github.com/yugabyte/yugabyte-db

