
Yugabyte © 2022 – All Rights Reserved

Audit Logging in YugabyteDB
Valerie Parham-Thompson

Friday, December 2, 2022

© 2020 All Rights Reserved

YugabyteDB offers several security features:

● Identity and access management
● Role-based access control
● Database access logging
● Audit logging

2

YugabyteDB security features

© 2020 All Rights Reserved

Logging can tell you the "who, what, when,
where" of actions on your systems.

On a database system, advanced logging allows
you to capture this information for any changes
to or access to the data.

3

Purpose of logging

© 2020 All Rights Reserved

The ysql_pg_conf_csv gflag is used to configure
a comma-separated list of PostgreSQL server
parameters that is appended to the
postgresql.conf file. (Default is %m [%p])

This is how you collect a record of "who, what,
when, and where."

Example:

4

First, configure log_line_prefix

%m timestamp with milliseconds
%p process ID (PID)
%q stops the line entry for system processes

%H current hostname
%C cloud name
%R region / data center name
%Z availability zone / rack name

%r client IP address
%a application name
%c session identifier
%l line number within the session
%u database user
%d database name

--ysql_pg_conf_csv="log_line_prefix
='%m [%p %l %c] %q[%C %R %Z %H] [%r
%a %u %d] '"

YugabyteDB adds
the highlighted
ones

© 2020 All Rights Reserved

Standard logging via log_statement provides the
statements sent to the database.

The open source pgaudit extension improves the
information collected by recording what was executed on
the database.

Additional pieces of information are stored in the logs for
each statement to facilitate log analysis.

pgaudit provides a more complete "what."

5

Next, pgaudit extension: improvement over basic logging

Remember
community
Postgres tools
work for
YugabyteDB.

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 6

Configuration

6

© 2020 All Rights Reserved

Create the extension.

yugabyte=# CREATE EXTENSION IF NOT EXISTS pgaudit;

CREATE EXTENSION

yugabyte=# \dx

 List of installed extensions

 Name | Version | Schema | Description

--------------------+---------+------------+---

 pg_stat_statements | 1.6 | pg_catalog | track execution statistics of all SQL statements executed

 pgaudit | 1.3.2 | public | provides auditing functionality

 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

7

Configuration

The necessary
library is
already bundled
with YugabyteDB.

© 2020 All Rights Reserved

pgaudit.log = 'all, -misc'

set pgaudit.log_parameter=on;

set pgaudit.log_relation=on;

set pgaudit.log_catalog=off;

8

Recommended pgaudit configuration

pgaudit.log records the statement type:
READ, WRITE, FUNCTION, ROLE, DDL,
MISC, MISC_SET, or ALL. If using ALL, can
exclude with -.

pgaudit.log_parameter records any
parameters sent with prepared statements.

pgaudit.log_relation records each table in a
multi-join query.

pgaudit.log_catalog can be turned off to
avoid noise from system catalog access.

Several more are
available. These
are key settings.

© 2020 All Rights Reserved

Why?

● Reduce load
● Reduce size of log files

Use pgaudit.role to define roles used for logging.

9

Object-level logging

Overhead of full
session audit logging
is about 5% – typical
for
logging/monitoring
tools.

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 10

Analyzing Log Output

10

© 2020 All Rights Reserved

2022-11-28 16:02:29.491 UTC [30832 13 6384d90c.7870] [gcp us-east1
us-east1-c yb-demo-parham-audit8-n1] [10.204.0.60(56986) ysqlsh yugabyte
yugabyte] LOG: AUDIT:
SESSION,3,1,READ,SELECT,TABLE,public.milliontable,select * from milliontable
limit 10;,<none>

11

Reading pgaudit output

● AUDIT_TYPE - SESSION or OBJECT.

● STATEMENT_ID - Unique statement ID for this session. Each
statement ID represents a backend call. Statement IDs are
sequential even if some statements are not logged. There
may be multiple entries for a statement ID when more than
one relation is logged.

● SUBSTATEMENT_ID - Sequential ID for each sub-statement
within the main statement (e.g., calling a function from a
query). Sub-statement IDs are continuous even if some
sub-statements are not logged. There may be multiple entries
for a sub-statement ID when more than one relation is logged.

● CLASS - e.g. READ, ROLE (see pgaudit.log).

● COMMAND - e.g., DDL, SELECT.

● OBJECT_TYPE (SELECT, DML, DDL) - TABLE, INDEX,
VIEW, etc.

● OBJECT_NAME (SELECT, DML, DDL) - The fully-qualified
object name (e.g., public.account).

● STATEMENT - Statement executed on the backend.

● PARAMETER - If pgaudit.log_parameter is set, then this field
will contain the statement parameters as quoted CSV or
<none> if there are no parameters. Otherwise, the output is
<not logged>.

Notice the fully
qualified
schema.table name.

© 2020 All Rights Reserved

● Save to cloud storage for future audit needs
● Log analysis tools: splunk, etc.
● Alerts (e.g., on DDL)
● Manual filtering

12

Using audit logging output

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 13

Demo (Session Level)

13

© 2020 All Rights Reserved

create table milliontable(name varchar(10), age integer,
joindate date);

2022-11-28 16:49:05.691 UTC [30832 21 6384d90c.7870] [gcp
us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(56986) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,6,1,DDL,CREATE TABLE,TABLE,public.milliontable,"create
table milliontable(name varchar(10), age integer, joindate
date);",<none>

14

Create table
If you try to create
a table that already
exists, you will see
a log entry in the
standard log, but
not the audit log.
This illustrates the
difference between
what the user sent
and what was
actually executed.

© 2020 All Rights Reserved

CREATE ROLE user1 WITH LOGIN PASSWORD 'password1';

GRANT CONNECT ON DATABASE yugabyte TO user1;

GRANT USAGE ON SCHEMA public TO user1;

GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO user1;

2022-11-28 16:56:22.514 UTC [30832 26 6384d90c.7870] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(56986) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,7,1,ROLE,CREATE ROLE,,,CREATE ROLE user1
WITH LOGIN PASSWORD <REDACTED>,<none>

2022-11-28 16:56:28.917 UTC [30832 28 6384d90c.7870] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(56986) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,8,1,ROLE,GRANT,,,GRANT CONNECT ON
DATABASE yugabyte TO user1;,<none>

2022-11-28 16:56:33.488 UTC [30832 30 6384d90c.7870] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(56986) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,9,1,ROLE,GRANT,SCHEMA,,GRANT USAGE ON
SCHEMA public TO user1;,<none>

2022-11-28 16:56:37.286 UTC [30832 32 6384d90c.7870] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(56986) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,10,1,ROLE,GRANT,TABLE,,GRANT ALL
PRIVILEGES ON ALL TABLES IN SCHEMA public TO user1;,<none>

15

Create user with grants

© 2020 All Rights Reserved 16

Change user password

ALTER ROLE user1 PASSWORD 'password2';

2022-11-28 19:10:57.875 UTC [7198 16 6384f6d9.1c1e] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(60012) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,4,1,ROLE,ALTER ROLE,,,ALTER ROLE user1
PASSWORD <REDACTED>,<none>

© 2020 All Rights Reserved 17

Simple insert

INSERT INTO milliontable (name, age, joindate) SELECT substr(md5(random()::text), 1, 10), (random() * 70 +
10)::integer, DATE '2018-01-01' + (random() * 700)::integer FROM generate_series(1, 1000);

2022-11-28 19:14:37.823 UTC [31980 8 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,1,1,WRITE,INSERT,TABLE,public.milliontable,"INSERT INTO milliontable (name, age, joindate) SELECT
substr(md5(random()::text), 1, 10), (random() * 70 + 10)::integer, DATE '2018-01-01' + (random() *
700)::integer FROM generate_series(1, 1000);",<none>

Notice the audit log
doesn't record all
of the values
inserted in this
case. Different from
CDC.

© 2020 All Rights Reserved 18

Simple read

select * from milliontable limit 5;

name | age | joindate

------------+-----+------------

 41ab60e791 | 38 | 2019-02-21

 166bb6b35c | 65 | 2019-07-28

 75b3397992 | 13 | 2019-10-19

 692f1fc721 | 70 | 2019-07-22

 8cf51def6e | 70 | 2018-09-22

(5 rows)

2022-11-28 19:16:11.033 UTC [31980 12 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,3,1,READ,SELECT,TABLE,public.milliontable,select * from milliontable limit 5;,<none>

© 2020 All Rights Reserved 19

Create table as select

create table milliontable_detail as select * from milliontable;

LOG

2022-11-28 19:17:58.922 UTC [31980 13 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: statement: create table milliontable_detail as select * from
milliontable;

AUDIT

2022-11-28 19:17:58.929 UTC [31980 14 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,4,1,READ,SELECT,TABLE,public.milliontable,create
table milliontable_detail as select * from milliontable;,<none>

2022-11-28 19:17:59.769 UTC [31980 15 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,4,1,WRITE,INSERT,TABLE,public.milliontable_detail,create table milliontable_detail as select * from
milliontable;,<none>

2022-11-28 19:18:53.007 UTC [31980 16 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,4,2,DDL,CREATE TABLE
AS,TABLE,public.milliontable_detail,create table milliontable_detail as select * from milliontable;,<none>

The audit logs are
much more granular
than the standard
logs. You can easily
parse out the
individual read and
change statements.

© 2020 All Rights Reserved 20

Add indexes

create index nameage_idx1 on milliontable(name,age);

create index namepop_idx on milliontable_detail(name,population);

2022-11-28 20:25:15.761 UTC [31980 94 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,22,1,DDL,CREATE
INDEX,INDEX,public.nameage_idx,"create index nameage_idx on milliontable(name,age);",<none>

2022-11-28 20:26:13.339 UTC [31980 100 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,23,1,DDL,CREATE
INDEX,INDEX,public.namepop_idx,"create index namepop_idx on milliontable_detail(name,population);",<none>

Notice when running
this index creation
that the audit log
entry is not created
until the index has
completed
backfilling.

© 2020 All Rights Reserved 21

Read with joins

select milliontable_detail.population from milliontable_detail join milliontable on
milliontable.name=milliontable_detail.name where milliontable.age>65 limit 5;

2022-11-28 20:27:22.719 UTC [31980 102 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,1,READ,SELECT,TABLE,public.milliontable_detail,select milliontable_detail.population from
milliontable_detail join milliontable on milliontable.name=milliontable_detail.name where
milliontable.age>65 limit 5;,<none>

2022-11-28 20:27:22.719 UTC [31980 103 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,1,READ,SELECT,TABLE,public.milliontable,select milliontable_detail.population from
milliontable_detail join milliontable on milliontable.name=milliontable_detail.name where
milliontable.age>65 limit 5;,<none>

You get two distinct
log entries, one for
each table that is
read.

© 2020 All Rights Reserved 22

Prepared statement

prepare milliontablestmt(character varying(10), integer, date)
as insert into milliontable(name, age, joindate) values ($1, $2, $3);

execute milliontablestmt ('75b33939a1', 77, '2020-10-01');

2022-11-28 20:37:32.506 UTC [31980 127 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,27,1,WRITE,PREPARE,,,"prepare
milliontablestmt(character varying(10), integer, date) as insert into milliontable(name, age, joindate)
values ($1, $2, $3);",<none>

2022-11-28 20:37:42.388 UTC [31980 130 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,28,1,WRITE,INSERT,TABLE,public.milliontable,"prepare milliontablestmt(character varying(10),
integer, date) as insert into milliontable(name, age, joindate) values ($1, $2,
$3);","75b33939a1,77,2020-10-01"

More information is
passed in the audit
log, allowing you to
tell exactly which
table is changed.

© 2020 All Rights Reserved 23

CTE

WITH CTE AS

(UPDATE milliontable

SET age = 888

WHERE name = 'asdf6789'

RETURNING name)

INSERT INTO milliontable_detail

SELECT name

 FROM cte;

2022-11-29 17:46:01.299 UTC [13533 75 6386425b.34dd] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(37530) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,32,1,WRITE,INSERT,TABLE,public.milliontable_detail,WITH CTE AS (UPDATE milliontable SET age = 888
WHERE name = 'asdf6789' RETURNING name) INSERT INTO milliontable_detail SELECT name FROM cte;,<none>

2022-11-29 17:46:01.299 UTC [13533 76 6386425b.34dd] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(37530) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,32,1,WRITE,UPDATE,TABLE,public.milliontable,WITH CTE AS (UPDATE milliontable SET age = 888 WHERE
name = 'asdf6789' RETURNING name) INSERT INTO milliontable_detail SELECT name FROM cte;,<none>

Again, distinct
entries for each
table accessed or
changed.

© 2020 All Rights Reserved 24

CTE - compare to log_statement

WITH CTE AS

(UPDATE milliontable

SET age = 888

WHERE name = 'asdf6789'

RETURNING name)

INSERT INTO milliontable_detail

SELECT name

 FROM cte;

2022-11-30 12:43:45.017 UTC [26600 55 63874eba.67e8] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(36808) ysqlsh yugabyte yugabyte] LOG: statement: WITH CTE AS (UPDATE milliontable SET age =
888 WHERE name = 'asdf6789' RETURNING name) INSERT INTO milliontable_detail SELECT name FROM cte;

Much harder to parse
out accesses or
changes to a
particular table
with standard
logging. What if you
wanted to look only
for updates to
milliontable_detail?

© 2020 All Rights Reserved 25

Function

DO $$

DECLARE

 result RECORD;

BEGIN

 FOR result IN

 SELECT name, age

 FROM milliontable limit 5

 LOOP

 INSERT INTO milliontable_detail (name, population)

 VALUES (result.name, result.age * 100);

 END LOOP;

END $$;

© 2020 All Rights Reserved 26

Function Logging - audit log

2022-11-29 20:57:01.262 UTC [12343 68961 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,24,1,FUNCTION,DO,,,"DO $$

2022-11-29 20:57:01.263 UTC [12343 68962 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,24,2,READ,SELECT,TABLE,public.milliontable,"SELECT
name, age

2022-11-29 20:57:01.266 UTC [12343 68963 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,3,WRITE,INSERT,TABLE,public.milliontable_detail,"INSERT INTO milliontable_detail (name, population)

2022-11-29 20:57:01.267 UTC [12343 68964 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,4,WRITE,INSERT,TABLE,public.milliontable_detail,"INSERT INTO milliontable_detail (name, population)

2022-11-29 20:57:01.267 UTC [12343 68965 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,5,WRITE,INSERT,TABLE,public.milliontable_detail,"INSERT INTO milliontable_detail (name, population)

2022-11-29 20:57:01.267 UTC [12343 68966 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,6,WRITE,INSERT,TABLE,public.milliontable_detail,"INSERT INTO milliontable_detail (name, population)

2022-11-29 20:57:01.267 UTC [12343 68967 638670ad.3037] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(42242) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,24,7,WRITE,INSERT,TABLE,public.milliontable_detail,"INSERT INTO milliontable_detail (name, population)

© 2020 All Rights Reserved 27

Function Logging - standard logging

2022-11-30 12:46:23.498 UTC [26600 58 63874eba.67e8] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(36808) ysqlsh yugabyte yugabyte] LOG: statement: DO $$ DECLARE result RECORD; BEGIN FOR result IN
SELECT name, age FROM milliontable limit 5 LOOP INSERT INTO milliontable_detail (name, population) VALUES
(result.name, result.age * 100); END LOOP; END $$;

Just one entry,
compared to several
distinct entries in
the audit log lines.

© 2020 All Rights Reserved 28

Create view and select from view

create view lowage as select * from milliontable where age<100 limit 50;

select * from lowage limit 5;

name | age | joindate

------------+-----+------------

 41ab60e791 | 38 | 2019-02-21

 166bb6b35c | 65 | 2019-07-28

 75b3397992 | 13 | 2019-10-19

 692f1fc721 | 70 | 2019-07-22

 8cf51def6e | 70 | 2018-09-22

Audit:

2022-11-28 20:51:24.522 UTC [31980 152 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,37,1,READ,SELECT,VIEW,public.lowage,select * from lowage limit 5;,<none>

2022-11-28 20:51:24.522 UTC [31980 153 63850890.7cec] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(33654) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,37,1,READ,SELECT,TABLE,public.milliontable,select * from lowage limit 5;,<none>

Standard Log:

2022-11-30 12:48:21.791 UTC [26600 68 63874eba.67e8] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(36808) ysqlsh yugabyte yugabyte] LOG: statement: select * from lowage limit 5;

The standard log
only shows a read on
an object named
"lowage." The audit
log shows that this
was a read on a
view, and shows the
read on the table
underlying that
view. What if view
was changed or
removed?

© 2020 All Rights Reserved 29

Truncate table

truncate account;

2022-11-29 00:14:27.533 UTC [31682 9 63854e51.7bc2] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(40796) ysqlsh yugabyte yugabyte] LOG: AUDIT: SESSION,1,1,WRITE,TRUNCATE TABLE,,,truncate
account;,<none>

© 2020 All Rights Reserved 30

Transaction !

select * from milliontable where name='41ab60e791';

begin;

update milliontable set age=65 where name='41ab60e791';

select * from milliontable where name='41ab60e791';

rollback;

select * from milliontable where name='41ab60e791';

2022-11-29 16:37:08.892 UTC [26810 25 6386347b.68ba] [gcp us-east1 us-east1-c yb-demo-parham-audit8-n1]
[10.204.0.60(36106) ysqlsh yugabyte yugabyte] LOG: AUDIT:
SESSION,10,1,WRITE,UPDATE,TABLE,public.milliontable,update milliontable set age=65 where
name='41ab60e791';,<none>

Be aware that
statements inside
transactions are
logged in the audit
lines, even if they
are later rolled
back.

Yugabyte © 2022 – All Rights Reserved 31

Thank You
Join us on Slack: yugabyte.com/slack (#yftt channel)

Star us on Github: github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

