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Current storage format in YugabyteDB
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A row corresponding to the user table is stored as multiple key value pairs in the storage 
engine - DocDB. For example, 

Table with structure:                          K (PK)  |  C1  | C2  | ………  | Cn
—----------------------------------------------
     k1          10      20                 1000

DocDB format:                                         < k1.C1 → 10 >
   …
   …
< k1.Cn → 1000 >

Motivation: Efficient updates: Only the columns being updated are locked, read and written. 
High degree of concurrency for updates, reduced write amplification for updates.

Side effects: Storage cost is high (even with prefix compression scheme). Not very efficient 
for bulk ingestion. 
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User defined types in YugabyteDB
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Customers can pack the different columns using user defined types (UDT), which get stored 
as a single key value pair in DocDB.

 < k1 → UDT { C1 → 10,  C2 → 20, ………  , Cn → 1000 } >

Side effects of UDTs

○ DocDB (Storage layer) is not aware of the user columns, treats it like blob of bytes.

○ UDTs are not UPDATE friendly - UPDATE of an attribute requires read-modify-write of 

entire UDT, resulting in sub-par performance.

○ The updates cannot be pushed to the DocDB layer, and hence the performance of 
updates are impacted.
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Why do we need Packed Row Storage format?
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Overtime, the need for Packed Row has increased; Customers moving from traditional SQL 
environments are used to the benefits of such packed format:

○ Lower storage footprint.

○ Efficient INSERTs, especially when a table has large number of columns.

○ Faster bulk ingestion. 

○ UDTs require application rewrite, are not necessarily an option for everyone, like latency 
sensitive update workloads.
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What does Packed Row Storage look like ?
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A row corresponding to the user table is stored as a single key-value pair in the storage 
engine - DocDB. 

< k1 → Packed { C1 → 10,  C2 → 20, ………  , Cn → 1000 } >

DocDB is aware of the schema, can leverage flexible packing strategies.
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Design aspects of Packed Row Storage

6

Inserts: Row is stored as a single key-value pair.

DocDB entry:  < k1 → Packed { C1 → 10,  C2 → 20, ………  , Cn → 1000 } >

Updates:  If some column(s) are updated, then each such column update is stored as a 
key-value pair in DocDb (same as without packed columns). 

DocDB entries: < k1 → Packed { C1 → 10,  C2 → 20, ………  , Cn → 1000 } >
              < k1.Cn → 2000 >

If all non-key columns are updated, then the row is stored in the packed format as one single 
key-value pair.

DocDB entries: < k1 → Packed { C1 → 10,  C2 → 20, ………  , Cn → 1000 } >
< k1 → Packed { C1 → 11,  C2 → 21, ………  , Cn → 1001 } >

This scheme adopts the best of both worlds - efficient updates and efficient storage. 
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Design aspects of Packed Row Storage (Continued)
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Select: Scans need to construct the row from packed inserts as well as non-packed update(s) 
if any.

Compactions: Compactions produce a compact version of the row, if the row has unpacked 
fragments due to updates.

Before Compaction: < k1 → Packed { C1 → 10,  C2 → 20, ………  , Cn → 1000 } >
              < k1.Cn →2000 >

After Compaction: < k1 -> Packed { C1 → 10,  C2 → 20, ………  , Cn → 2000 } >

Backwards compatible! Read code can interpret non-packed format as well. Write/Updates 
can produce non-packed format as well.
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Results: Throughput
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Experiment: Bulk load of 1 million rows using copy.

Summary: Bulk load is at least 2x faster in Packed versus non-packed. For tables with larger 
number of columns, the speed up increases is even higher (4-5x as reported by some 
customers). Packed Rows reduces the gap between transactional and non-transactional bulk 
loads.
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Results: SST file sizes

9

Experiment: Insert 2000 rows in a 1000 column table. 

Summary: On-disk sizes are about 2x better for Packed vs. Unpacked. 

In memory (block cache) usage is 5x better (93MB vs.18MB).
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Demo
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Results: Scans
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Scan performance: For sequential scan of table with 1 million rows, Packed columns is 2x 
better than non-packed case (even better for wider tables).

All in all, win-win for most workloads!
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How to use Packed Row feature?
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Packed Rows is available as a Beta feature in Release - 2.15.1.0-b175 onwards.

Enable tserver gflag - ysql_enable_packed_row on the universe.

Additional knobs/gflags:

ysql_packed_row_size_limit - Packed row size limit for YSQL, defaults to block size limit. For 
rows that are over the block size limit, such rows will be stored in unpacked form (like before).
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Limitations / Roadmap
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Now: 2.15.1 release - Packed rows feature in Beta. 

○ Backwards compatible: Feature ON produced packed format (for new inserts), Feature OFF 
produces unpacked format (new inserts). 

○ Cross feature compatible: Works with PITR, Co-located tables. 
○ Integration with xCluster and CDC (In progress) - There are some known limitations with 

xCluster and schema changes/DDLs and Packed Row feature. 

Future: 2.17.X release

○ Packed rows feature works well across features like xCluster, CDC. 
○ Packed rows support for YCQL. 
○ Additional storage optimizations - storing NULLs efficiently etc.
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Thank You

Join us on Slack: yugabyte.com/slack (#yftt channel)

Star us on Github: github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

