Packed Row Storage Format

\/ I_J —-|-J —_FugabytoDB
_I_I "l:';i:ha)"l'alks

Current storage format in YugabyteDB

A row corresponding to the user table is stored as multiple key value pairs in the storage
engine - DocDB. For example,

Table with structure: K(PK) | C1 [C2 |..o..... | Cn
k1 10 20 1000
DocDB format: <k1.C1— 10>

<k1.Cn — 1000 >

Motivation: Efficient updates: Only the columns being updated are locked, read and written.
High degree of concurrency for updates, reduced write amplification for updates.

Side effects: Storage cost is high (even with prefix compression scheme). Not very efficient
for bulk ingestion.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

User defined types in YugabyteDB

Customers can pack the different columns using user defined types (UDT), which get stored
as a single key value pair in DocDB.

<k1—-UDT{C1—-10, C2— 20, ,Cn — 1000} >

Side effects of UDTs

o DocDB (Storage layer) is not aware of the user columns, treats it like blob of bytes.
o UDTs are not UPDATE friendly - UPDATE of an attribute requires read-modify-write of

entire UDT, resulting in sub-par performance.
o The updates cannot be pushed to the DocDB layer, and hence the performance of

updates are impacted.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

Why do we need Packed Row Storage format?

Overtime, the need for Packed Row has increased; Customers moving from traditional SQL
environments are used to the benefits of such packed format:

o Lower storage footprint.
o Efficient INSERTSs, especially when a table has large number of columns.
o Faster bulk ingestion.

o UDTs require application rewrite, are not necessarily an option for everyone, like latency
sensitive update workloads.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

What does Packed Row Storage look like ?

A row corresponding to the user table is stored as a single key-value pair in the storage
engine - DocDB.

<k1— Packed {C1 — 10, C2 — 20, ,Cn — 1000} >

DocDB is aware of the schema, can leverage flexible packing strategies.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

Design aspects of Packed Row Storage

Inserts: Row is stored as a single key-value pair.

DocDB entry: <k1 — Packed {C1 — 10, C2 — 20, ,Cn — 1000} >

Updates: If some column(s) are updated, then each such column update is stored as a
key-value pair in DocDb (same as without packed columns).

DocDB entries: <k1 — Packed {C1 — 10, C2 - 20, ,Ch — 1000} >
<k1.Cn — 2000 >

If all non-key columns are updated, then the row is stored in the packed format as one single
key-value pair.

DocDB entries: <k1— Packed{C1— 10, C2 — 20, ,Cn — 1000} >
<kl — Packed{C1—> 11, C2—>21,......... ,Cn— 1001} >

This scheme adopts the best of both worlds - efficient updates and efficient storage.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

Design aspects of Packed Row Storage (Continued)

Select: Scans need to construct the row from packed inserts as well as non-packed update(s)
if any.

Compactions: Compactions produce a compact version of the row, if the row has unpacked
fragments due to updates.

Before Compaction: <k1— Packed {C1 — 10, C2 — 20, ,Ch — 1000} >
< k1.Cn —2000 >

After Compaction: <k1->Packed {C1 — 10, C2 — 20, ,Ch — 2000} >

Backwards compatible! Read code can interpret non-packed format as well. Write/Updates
can produce non-packed format as well.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

Results: Throughput

Experiment: Bulk load of 1 million rows using copy.

Time (seconds) for ingesting 1 million rows using copy

B Tx (11 column) [Tx (21 column) Non Tx (11 column) [Non Tx (21 column)
60
40
20 I lI I
0
Without Packed Rows With Packed Rows

Summary: Bulk load is at least 2x faster in Packed versus non-packed. For tables with larger
number of columns, the speed up increases is even higher (4-5x as reported by some
customers). Packed Rows reduces the gap between transactional and non-transactional bulk
loads.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

Results: SST file sizes

Experiment: Insert 2000 rows in a 1000 column table.

SST file size (MB) for 2000 rows of 1000 column table.

B Unpacked [Packed
25

20

Snappy compression Zlib compression

Summary: On-disk sizes are about 2x better for Packed vs. Unpacked.

In memory (block cache) usage is 5x better (93MB vs.18MB).

g yugabyteDB Yugabyte © 2022 - All Rights Reserved

Demo

10

Results: Scans

Scan performance: For sequential scan of table with 1 million rows, Packed columns is 2x
better than non-packed case (even better for wider tables).

Time (ms) to select 1M rows
I SELECT * (YB unpacked) [SELECT * (YB packed)
10000

7500
5000

2500

1+1 cols 1+5 cols 1+10 cols

All in all, win-win for most workloads!

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 11

How to use Packed Row feature?

Packed Rows is available as a Beta feature in Release - 2.15.1.0-b175 onwards.
Enable tserver gflag - ysql_enable_packed_row on the universe.

Additional knobs/gflags:

ysql_packed_row_size_limit - Packed row size limit for YSQL, defaults to block size limit. For
rows that are over the block size limit, such rows will be stored in unpacked form (like before).

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 12

Limitations / Roadmap

Now: 2.15.1 release - Packed rows feature in Beta.

o Backwards compatible: Feature ON produced packed format (for new inserts), Feature OFF

produces unpacked format (new inserts).

o Cross feature compatible: Works with PITR, Co-located tables.

o Integration with xCluster and CDC (In progress) - There are some known limitations with
xCluster and schema changes/DDLs and Packed Row feature.

Future: 2.17.X release

o Packed rows feature works well across features like xCluster, CDC.

o Packed rows support for YCQL.
o Additional storage optimizations - storing NULLSs efficiently etc.

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 13

Thank You

yugabyte.com/slack (#yftt channel)
github.com/yugabyte/yugabyte-db

VA -k
M o o

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

