
Yugabyte © 2022 – All Rights Reserved

Introducing YugabyteDB Voyager
Accelerate cloud adoption with simple migration.

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved

Motivation

2

YB Voyager

2

Yugabyte © 2022 – All Rights Reserved

Motivation: Modernize

3

Legacy

● Higher TCO
● Doesn’t / Expensive to

scale
● Lower performance
● Unable to meet evolving

business needs
● + Other reasons

Yugabyte © 2022 – All Rights Reserved

Motivation: Modernize

4

Legacy

● Higher TCO
● Doesn’t / Expensive to

scale
● Lower performance
● Unable to meet evolving

business needs
● + Other reasons

modernize

Yugabyte © 2022 – All Rights Reserved

Motivation: Modernize

5

Legacy

● Higher TCO
● Doesn’t / Expensive to

scale
● Lower performance
● Unable to meet evolving

business needs
● + Other reasons

modernize
Modern

● Cloud-native apps
● Lower & configurable TCO
● Scales on demand
● Higher performance
● Agile
● + Other benefits

Yugabyte © 2022 – All Rights Reserved

Motivation: Modernize your data

6

Yugabyte © 2022 – All Rights Reserved

Motivation: Modernize your data

7

Legacy
transactional

databases

● Expensive licensing
model

● Proprietary tech
● Doesn’t scale, not

distributed
● Tied to a cloud provider
● Doesn’t meet evolving

security and compliance
needs

● OSS yet Monolithic
● + Other limitations

modernize Yugabyte
DB

● Cloud-native database
● Distributed SQL
● Lower TCO
● Scales horizontally &

vertically
● Higher performance
● Postgres compatible
● + Other benefits

Yugabyte © 2022 – All Rights Reserved

Motivation: Modernize your data

8

Legacy
transactional

databases

● Expensive licensing
model

● Proprietary tech
● Doesn’t scale, not

distributed
● Tied to a cloud provider
● Doesn’t meet evolving

security and compliance
needs

● OSS yet Monolithic
● + Other limitations

modernize Yugabyte
DB

● Cloud-native database
● Distributed SQL
● Lower TCO
● Scales horizontally &

vertically
● Higher performance
● Postgres compatible
● Geo-distributed
● + Other benefits

migrate

Yugabyte © 2022 – All Rights Reserved

Motivation: Migrate to a CN database to modernize your data

9

Legacy
transactional

databases

● Expensive licensing
model

● Proprietary tech
● Doesn’t scale, not

distributed
● Tied to a cloud provider
● Doesn’t meet evolving

security and compliance
needs

● OSS yet Monolithic
● + Other limitations

modernize Yugabyte
DB

● Cloud-native database
● Distributed SQL
● Lower TCO
● Scales horizontally &

vertically
● Higher performance
● Postgres compatible
● Geo-distributed
● + Other benefits

migrate

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved

Challenges

10

Data Migration

10

Yugabyte © 2022 – All Rights Reserved

Typical Migration process

11

Source Target

Yugabyte © 2022 – All Rights Reserved

Typical Migration process

12

Source Target

Migration
tool

Yugabyte © 2022 – All Rights Reserved

Typical Migration process

13

Source Target

Migration
tool

● Connects to source
● Exports Schema
● Exports Data files
● Some tools can capture

change-data

● Connects to Target
● Imports Schema
● Imports Data
● Some tools can ingest

change-data

Yugabyte © 2022 – All Rights Reserved

Typical Migration tools - Atypical for Distributed SQL

14

Works just fine when the Target is also a
monolithic/single-node database.

Unaware of the strengths of a distributed
database and doesn’t scale.

Some tools depend on computational
clusters to prep data sets to be ingested
into a distributed database.

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved

Requirements: When Migrating to Distributed SQL

15

YB Voyager

15

Yugabyte © 2022 – All Rights Reserved

YB Voyager: Goals & requirements

16

OFFLINE
Migration

ONLINE
Migration

Yugabyte © 2022 – All Rights Reserved

YB Voyager: Goals & requirements

17

OFFLINE
Migration

ONLINE
Migration

❏ Export source database schema/objects
❏ Generate a report for users to verify
❏ Create schema objects on YB
❏ Bulk load data
❏ Do validation and generate a final report

❏ All from above (OFFLINE mode)
❏ Stream change-data to YB

FAILBACK
❏ Replicate changes from YB to original source

DB
❏ Mitigates risk of migrating to cloud

Yugabyte © 2022 – All Rights Reserved

YB Voyager: Goals & requirements

18

OFFLINE
Migration

ONLINE
Migration

❏ Export source database schema/objects
❏ Generate a report for users to verify
❏ Create schema objects on YB
❏ Bulk load data
❏ Do validation and generate a final report

❏ All from above (OFFLINE mode)
❏ Stream change-data to YB

➔ User friendly CLI
➔ Chunk the source files
➔ Parallel data ingestion based

on Target YB cluster config
➔ Migrate data to YB from flat

files & popular databases like
Oracle, MySQL etc

➔ Same UX/steps for all
supported source systems

➔ Safe defaults (with override):
◆ #of connections based

on target DB config
◆ Ingest batch size
◆ Disable transaction

mode
◆ Upsert mode

➔ Idempotent & should
restart/resume from failed
step

FAILBACK
❏ Replicate changes from YB to original source

DB
❏ Mitigates risk of migrating to cloud

Yugabyte © 2022 – All Rights Reserved

YB Voyager: OFFLINE Migration process flow

19

Prepare

Install Voyager

Prepare source DB

Prepare target DB

1

Voyager is installed on a VM with sufficient disk space

Verify connectivity and right level of access to source DB

Verify connectivity and right level of access to target Yugabyte DB

Yugabyte © 2022 – All Rights Reserved

YB Voyager: OFFLINE Migration process flow

20

Migrate Schema

Export Schema

Analyze Schema

Import Schema

2 Use CLI commands to export schema and objects.
Tables, Views, SPs, Functions, Triggers, Indexes,
Sequence are all (DDLs) exported. SPs/Functions are
translated to Postgres compatible syntax.

Optional step for the User to manually inspect, verify
and make tweaks to the DDLs if necessary.

In this step, the appropriate objects are created on the
target YB database.

Safe defaults: Indexes are deferred & created only
after data load, foreign key check are disabled,
triggers are created but disabled.

*Safe defaults can be overridden

Yugabyte © 2022 – All Rights Reserved

YB Voyager: OFFLINE Migration process flow

21

Migrate Data

Export Data

Import Data

Verify

3
A flat file per source table is generated.

Safe defaults: These files are broken to chunks of
100K rows per file, named appropriately & stored in
a specific folder structure.

Safe defaults: 1 connection per data node, transaction mode is OFF, upsert is
enabled, FK check disabled etc.

Each file is bulk loaded, tracks progress within and across all the connections &
data loading jobs. If any failures, processed files are ignored and resumes from the
point of failure.

Verify completion of migration.*Safe defaults can be overridden

Yugabyte © 2022 – All Rights Reserved

Thank You
YB Voyager Docs/Getting Started:
https://docs.yugabyte.com/preview/migrate/yb-voyager/

Join us on Slack: yugabyte.com/slack (#yftt channel)

Star us on Github: github.com/yugabyte/yugabyte-db

https://docs.yugabyte.com/preview/migrate/yb-voyager/
https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

