
Yugabyte © 2022 – All Rights Reserved

Are Stored Procedures
a Good Thing?

Bryn Llewellyn
Friday, 15-July-2022

https://postgresql.life/post/bryn_llewellyn/

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 2

History Lesson

2

Yugabyte © 2022 – All Rights Reserved

● Stored procedures were first supported by RDBMSs in the late 1980s

Back then, there were only commercial RDBMSs

● Motivation:

○ So-called “run authority”

○ Ownership of responsibility for correct SQL

○ Esp. guaranteed atomicity for multi-statement transactions

○ Round-trip reduction for multi-statement transactions

When and why did RDMSs first support stored procedures?

3

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 4

Some Ancient Wisdom

4

Yugabyte © 2022 – All Rights Reserved

● Large software systems must be built from modules

● The RDBMS is a module—no less when it’s a Distributed SQL system

● “Hard shell” paradigm

● “Result happiness” versus “Result misery” *

Modular software construction—decades-old wisdom

5

* “Annual income twenty pounds, annual expenditure nineteen nineteen and six, result happiness. Annual income twenty
pounds, annual expenditure twenty pounds ought and six, result misery.” — David Copperfield, 1850

Yugabyte © 2022 – All Rights Reserved

● A module encapsulates specified, coherent functionality

● An API exposes the functionality

● All implementation details are scrupulously hidden behind this API

● No body would dream of challenging these notions

Large software systems must be built from modules

6

Yugabyte © 2022 – All Rights Reserved

● When an application uses an RDBMS, this is surely a module at the highest level of
top-down decomposition

● The structure of the tables, the rules that constrain their rows, and the SQL statements
that read and change these rows, are the implementation details

● The API defines and implements the set of atomic business transactions and queries that
the database must support

● PostgreSQL, and therefore YSQL, provide subprograms in SQL and in PL/pgSQL
to express the API

The RDBMS is a module—no less when it’s a Distributed SQL system

7

Yugabyte © 2022 – All Rights Reserved

The “hard shell” paradigm

8

Use stored procedures*
to encapsulate

the RDBMS’s functionality
behind an impenetrable hard shell API

* I prefer to say “subrograms whose definitions are stored in the database and that execute in the same process that
top-level SQL executes in”. But “stored procedures” will do as a shorthand.

Yugabyte © 2022 – All Rights Reserved

The “bag of tables” paradigm

9

“We don’t use stored procedures.”

All our table have a single owner
and live in a single schema.

Client code can read change
all table content

and even drop and create tables.

Yugabyte © 2022 – All Rights Reserved

● I’ve spoken to a huge number of developers of database application over the years

● Those who follow the hard shell paradigm:
○ Are mainly happy with their apps
○ Express themselves coherently
○ Explain well how their apps are architected
○ Ask clear questions
○ Make sensible requests for enhancements

● Those who follow the bag of tables paradigm:
○ Are mainly miserable
○ Are hard to understand

“Result happiness” versus “Result misery”

10

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 11

Hard Shell in Easy Pictures

11

Yugabyte © 2022 – All Rights Reserved

“app” database

public

12

Yugabyte © 2022 – All Rights Reserved

public

“app” database

13

Yugabyte © 2022 – All Rights Reserved

“app” database

14

Yugabyte © 2022 – All Rights Reserved

data

“app” database

15

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code

“app” database

helpers

16

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code

“app” database

usage

17

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code

select,
insert,

update,
delete

usage

“app” database

18

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code api

select,
insert,

update,
delete

execute

usageusage

“app” database

19

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code api client

select,
insert,

update,
delete

execute execute

usageusage usage

“app” database

20

Yugabyte © 2022 – All Rights Reserved

client

“app” database

21

Yugabyte © 2022 – All Rights Reserved

ui_client

“app” database

robot_client

22

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 23

Don’t Let This Happen…

23

Yugabyte © 2022 – All Rights Reserved

Everybody has seen something like this…

24

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 25

Express the API as a Set of
JSON-In / JSON-Out Procedures

25

Yugabyte © 2022 – All Rights Reserved

● JSON was invented as a generic data interchange format between systems with
different type systems

● All modern client-side programming environments have built-in functionality to
transform, in each direction, between an arbitrarily complex compound value and its
JSON representation

● YSQL inherits PostgreSQL’s corresponding built-in functionality

● The natural, easy, and best design choice is to parameterize the hard shell API
as JSON-in / JSON-out procedures
○ “REST, JSON, And All That: A Memorable History of Client/Server communication”

Client-side environments have different type systems than YSQL

26

Yugabyte © 2022 – All Rights Reserved

● Procedures and functions are different

● A procedure does something
○ It’s invoked with the call statement—meaning “do this”
○ It’s named with an imperative verb (phrase)
○ But it can also have “out” arguments

● A function names a computed value
○ It’s invoked as a term in an expression (in SQL or in PL/pgSQL)
○ It’s named with an noun (phrase)—just as you name a column or a variable
○ Functions should not have side-effects
○ So a function with “out” arguments is a nasty anti-pattern

Why express the API as procedures and not functions?

27

Yugabyte © 2022 – All Rights Reserved

● Something can always go wrong—like with the Oracle Partner Store’s ORA-06550
○ Even a query can go wrong if it expects exactly one row for a business unique key
○ It might get no rows — like you mentioned a non-existent order number
○ It might get many rows — meaning and earlier constraint-enforcement error

● Such application errors must never escape the database
○ the ORA-06550 error says that the app constructed a subprogram

that had a syntax error

● So these “unexpected” errors (i.e. developer bugs) must be recorded in an incidents table
○ Inserting a row is doing something!

Every single API subprogram might need to do something

28

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 29

The Use Case for the Demo App

29

Yugabyte © 2022 – All Rights Reserved

Classic (agnostic) master-details Create and Read

30

create table data.masters(
 mk uuid default gen_random_uuid()
 constraint masters_pk primary key,
 v text not null
 constraint masters_v_unq unique
 constraint masters_v_chk check(length(v) <= 10));

create table data.details(
 mk uuid,
 dk uuid default gen_random_uuid(),
 v text not null,

 constraint details_pk primary key(mk, dk),

 constraint details_fk foreign key(mk)
 references data.masters(mk)
 match full
 on delete cascade
 on update restrict,

 constraint details_mk_v_unq unique(mk, v));

Yugabyte © 2022 – All Rights Reserved

Create new master and details or new details for existing master (bad)

create type m_and_ds_ as(m text, ds text[]);

create procedure do_insert(this in m_and_ds_)
 language plpgsql
as $body$
declare
 ...
begin
 begin
 insert into masters(v) values(this.m) returning mk into new_mk;
 exception when unique_violation then
 select mk into new_mk from masters where v = this.m;
 new_master := false;
 end;

 if cardinality(this.ds) > 0 then
 -- Notorious anti-pattern: many single row SQLs in a loop.
 foreach d in array this.ds loop
 insert into details(mk, v) values(new_mk, d);
 end loop;
 end if;
end;
$body$;

31

Yugabyte © 2022 – All Rights Reserved

Aside — Brief tutorial on “cross join lateral” with “unnest(arr)”

create table t(
 m text not null,
 d text not null,
 constraint t_pk primary key(m, d));

create type facts as(m text, ds text[]);

with c(v) as (
 select ('Joe', array['fork', 'spoon', 'knife'])::facts)
insert into t(m, d)
select (c.v).m, arr.d
from
 c
 cross join lateral
 unnest((c.v).ds) as arr(d);

select m, d from t order by m, d;

 m | d
-----+-------
 Joe | fork
 Joe | knife
 Joe | spoon

32

Yugabyte © 2022 – All Rights Reserved

Create new master and details or new details for existing master (good)

create type m_and_ds_ as(m text, ds text[]);
create type mk_and_ds_ as(mk uuid, ds text[]);

create procedure do_insert(this in m_and_ds_)
 language plpgsql
as $body$
declare
 ...
begin
 begin
 insert into masters(v) values(this.m) returning mk into new_mk;
 exception when unique_violation then
 select mk into new_mk from masters where v = this.m;
 new_master := false;
 end;

 if cardinality(this.ds) > 0 then
 -- Optimal: on single "bulk" SQL.
 with c as (
 select (new_mk, this.ds)::mk_and_ds_ as v)
 insert into details(mk, v)
 select (c.v).mk, arr.d
 from c cross join lateral unnest((c.v).ds) as arr(d);
 end if;
end;
$body$;

33

Yugabyte © 2022 – All Rights Reserved

Recap — Anti-pattern: insert many “details” rows one-by-one in a loop

34

create procedure do_insert(this in m_and_ds_)
 language plpgsql
as $body$
declare
 ...
begin
 begin
 insert into masters(v) values(this.m) returning mk into new_mk;
 exception when unique_violation then
 select mk into new_mk from masters where v = this.m;
 new_master := false;
 end;

 if cardinality(this.ds) > 0 then
 foreach d in array this.ds loop
 insert into details(mk, v) values(new_mk, d);
 end loop;

 end if;
end;
$body$;

Yugabyte © 2022 – All Rights Reserved

Recap — Optimal: insert many “details” rows with one single “bulk” SQL

35

create procedure do_insert(this in m_and_ds_)
 language plpgsql
as $body$
declare
 ...
begin
 begin
 insert into masters(v) values(this.m) returning mk into new_mk;
 exception when unique_violation then
 select mk into new_mk from masters where v = this.m;
 new_master := false;
 end;

 if cardinality(this.ds) > 0 then
 with c as (
 select (new_mk, this.ds)::mk_and_ds_ as v)
 insert into details(mk, v)
 select (c.v).mk, arr.d
 from c cross join lateral unnest((c.v).ds) as arr(d);
 end if;
end;
$body$;

Yugabyte © 2022 – All Rights Reserved

Read existing master and its details

36

create type m_and_ds_ as(m text, ds text[]);

create function master_and_details_report(mv_in in text)
 returns m_and_ds_
 language plpgsql
 security definer
as $body$
declare
 m_and_ds m_and_ds_;
begin
 select m.v, array_agg(d.v order by d.v)
 into m_and_ds
 from
 data.masters m
 left outer join
 data.details d
 using (mk)
 where m.v = mv_in
 group by 1
 order by 1;

 return m_and_ds;
end;
$body$;

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 37

The App-Specific
JSON-In / JSON-Out Protocol

37

Yugabyte © 2022 – All Rights Reserved

No problems

procedure insert_master_and_details(j in text, j_outcome inout text)

38

call insert_master_and_details(

 '{"m": "Mary", "ds": ["shampoo", "soap", "toothbrush", "towel"]}', '');

{"m": "Arthur", "ds": ["scissors", "saucer", "spatula", "spatula", "scissors"]}

→ {"status": "success"}

New-master cannot have dup details

→ {"reason": "New master 'Arthur' bad duplicate details: 'scissors','spatula',",
 "status": "user error"}

Program bug: forgot to cater for masters_v_chk violation

→ {"status": "unexpected error", "ticket": 1}

{"m": "Christopher", "ds": []}', '')

Yugabyte © 2022 – All Rights Reserved

TICKET NO. 1

39

unit: procedure code.insert_master_and_details(text, text)
returned_sqlstate: 23514
message_text: new row for relation "masters" violates check constraint "masters_v_chk"
pg_exception_detail: Failing row contains (cc93bd34-b68a-4d47-b9e9-0033031cefb7, Christopher).
constraint_name: masters_v_chk
table_name: masters
schema_name: data

pg_exception_context

SQL statement "insert into data.masters(v) values(m_and_ds.m) returning mk"
PL/pgSQL function code.insert_master_and_details(text,text) line 17 at SQL statement
SQL statement "call code.insert_master_and_details(j, outcome)"
PL/pgSQL function insert_master_and_details(text,text) line 3 at CALL

Yugabyte © 2022 – All Rights Reserved

No problems

procedure do_master_and_details_report(j in text, j_outcome inout text)

40

call do_master_and_details_report(

 '{"key": "Mary"}', '');

→ {"status": "m-and-ds report success",
 "m_and_ds": {"m": "Mary", "ds": ["shampoo", "soap", "toothbrush", "towel"]}}

Bill doesn't exist

{"key": "Bill"}

→ {"reason": "The master business key 'Bill' doesn't exist", "status": "user error"}

Application program bug: typo "ket" for "key"

{"ket": "Fred"}

→ {"reason": "Bad JSON in: {\"ket\": \"Fred\"}", "status": "client code error"}

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 41

Users and Schemas: Refined Picture

41

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code api client

select,
insert,

update,
delete

execute execute

usageusage usage

“app” database

42

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

api

ap
i

code

co
de

_h
el

pe
rs

co
de

client

43

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

api

ap
i

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

client

44

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

api

ap
i

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

client

45

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

support

su
pp

or
t

api

ap
i

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

client

46

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

utils

ut
ils

api

ap
i

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

clientsupport

su
pp

or
t

47

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

utils

ut
ils

api

ap
i

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

clientpostgres
ad

m
in

support

su
pp

or
t

48

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

utils

ut
ils

api

ap
i

qa

qa
_j

so
n_

ut
ils

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

clientpostgres
ad

m
in

support

su
pp

or
t

49

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

utils

ut
ils

api

ap
i

qa
_c

od
e

qaqa

qa
_j

so
n_

ut
ils

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

clientpostgres
ad

m
in

support

su
pp

or
t

50

Yugabyte © 2022 – All Rights Reserved

“app” database

data

da
ta

utils

ut
ils

api

ap
i

qa
_c

od
e

qa
_u

i_
si

m
ul

at
io

n

qajson

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

client

su
pp

or
t

qa

qa
_j

so
n_

ut
ils

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

ad
m

in
postgres support

51

Yugabyte © 2022 – All Rights Reserved

application-specific objectsapplication-agnostic objects

data

da
ta

utils

ut
ils

api

ap
i

qa
_c

od
e

qa
_u

i_
si

m
ul

at
io

n

qajson

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

clientqa

qa
_j

so
n_

ut
ils

app_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

ad
m

in
postgres support

order of installation in development shop

52

Yugabyte © 2022 – All Rights Reserved

application-specific objectsapplication-agnostic objects

data

da
ta

api

ap
i

json

js
on

_h
el

pe
rs

js
on

_s
hi

m

code

co
de

_h
el

pe
rs

co
de

clientapp_admin

js
on

_u
ti

ls
ge

ne
ri

c_
ut

ils

ad
m

in
postgres support

order of installation in deployed site

53

Yugabyte © 2022 – All Rights Reserved

.

.

.

data code api client

select,
insert,

update,
delete

execute execute

usageusage usage

“app” database

compare with the simple prototype

54

Yugabyte © 2022 – All Rights Reserved

● Modularity (separation of skills and concerns using roles and/or schemas)

○ Ordinary SQL DMLs separated from JSON shim
○ Development-shop-only code separated out

■ QA code added
■ “list my objects” views and table functions added

● Reusability of the overall design concept

○ Application-agnostic components separated out
■ JSON schema compliance code parameterized (with own, separate QA)
■ Support subsystem

● Performance

○ Model accommodates dedicated development shop performance testing code

Comparing the final concept with the prototype

55

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 56

And Now the Stage is Set…

Over to the Live Demos

56

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 57

Summary

57

Yugabyte © 2022 – All Rights Reserved

● Correctness
○ Separation of skills and concerns
○ The right experts own their own tersely coupled modules
○ Data type safety

● Security
○ Controlled access to objects — client-code can’t change or read tables
○ All that you can do is call proc1(...), call proc2(...), ...
○ Implicit, effortless, SQL-injection proofing

● Performance
○ Minimization of client-server round trips
○ Prepare-execute paradigm with no coding effort

The Benefits of encapsulating the database behind a hard shell API

58

Yugabyte © 2022 – All Rights Reserved

Thank You
Join us on Slack: yugabyte.com/slack (#yftt channel)

Star us on Github: github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

