Are Stored Procedures
a Good Thing?

\/ I_I ._—I_I _J_YlugabytoDB
_I_I :';i:ha)!ralks

https://postgresql.life/post/bryn_llewellyn/

History Lesson

(2) yugabyte Yugabyte © 2022 - All Rights Reserved 2

When and why did RDMSs first support stored procedures?

e Stored procedures were first supported by RDBMSs in the late 1980s

Back then, there were only commercial RDBMSs

e Motivation:
o So-called “run authority”
o Ownership of responsibility for correct SQL
o Esp. guaranteed atomicity for multi-statement transactions

o Round-trip reduction for multi-statement transactions

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Some Ancient Wisdom

{ Z) yugabyte Yugabyte © 2022 - All Rights Reserved 4

Modular software construction—decades-old wisdom

e Large software systems must be built from modules

The RDBMS is a module—no less when it’s a Distributed SQL system

“Hard shell” paradigm

e “Result happiness” versus “Result misery” *

* "Annual income twenty pounds, annual expenditure nineteen nineteen and six, result happiness. Annual income twenty
pounds, annual expenditure twenty pounds ought and six, result misery.” — David Copperfield, 1850

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Large software systems must be built from modules

e A module encapsulates specified, coherent functionality

e An APl exposes the functionality

e Allimplementation details are scrupulously hidden behind this API

e Nobody would dream of challenging these notions

Yugabyte © 2022 - All Rights Reserved

The RDBMS is a module—no less when it’s a Distributed SQL system

e When an application uses an RDBMS, this is surely a module at the highest level of
top-down decomposition

e The structure of the tables, the rules that constrain their rows, and the SQL statements
that read and change these rows, are the implementation details

e The APl defines and implements the set of atomic business transactions and queries that
the database must support

e PostgreSQL, and therefore YSQL, provide subprograms in SQL and in PL/pgSQL
to express the API

@' yugabyte Yugabyte © 2022 - All Rights Reserved

The “hard shell” paradigm

Use stored procedures®
to encapsulate

the RDBMS's functionality
behind an impenetrable hard shell API

* | prefer to say “subrograms whose definitions are stored in the database and that execute in the same process that
top-level SQL executes in”. But “stored procedures” will do as a shorthand.

g yugabyte Yugabyte © 2022 - All Rights Reserved

The “bag of tables” paradigm

“We don'’t use stored procedures.”

All our table have a single owner
and live in a single schema.
Client code can read change
all table content
and even drop and create tables.

yugabyte Yugabyte © 2022 - All Rights Reserved
9

“Result happiness” versus “Result misery”

e |'ve spokento a huge number of developers of database application over the years

e Those who follow the hard shell paradigm:
o Are mainly happy with their apps
Express themselves coherently
Explain well how their apps are architected
Ask clear questions
Make sensible requests for enhancements

O O O O

e Those who follow the bag of tables paradigm:
o Are mainly miserable
o Arehardtounderstand

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Hard Shell in Easy Pictures

{ Z) yugabyte Yugabyte © 2022 - All Rights Reserved 11

public

“app” database

Yugabyte © 2022 - All Rights Reserved

public

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 13

“app” database

@ yugabyte Yugabyte © 2022 - All Rights Reserved

data

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 15

data code

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 16

data

usage

code

LY yugabyteDB

“app” database

Yugabyte © 2022 - All Rights Reserved

17

data code

| @& ®
-:*’

select,

insert,
update,

delete

usage

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 18

data code api

@

usage ‘
s —

— _—

select, execute
insert, .

update,
delete

—

usage

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 19

data

-

code

—

usage

)

—

select,

api

. —

@

usage

)

_—

execute

insert,
update,
delete

LY yugabyteDB

usage

execute

“app” database

:’:

Yugabyte © 2022 - All Rights Reserved

20

“app” database

client

O
O

Yugabyte © 2022 - All Rights Reserved

ui_client

= T

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 22

Don’t Let This Happen...

(2) yugabyte Yugabyte © 2022 - All Rights Reserved 23

Everybody has seen something like this...

ORACL.E" PARINER STORE

Error processing validation.

ORA-06550: Ligne 16, colonne 13 ; PLS-00103: Symbole "A" rencontré a la place d'un des symboles suivants : * & = -
+ ! < /> atinis mod remainder not rem <exposant (**)> <> or!=or ~= >= <= <> and or like like2 like4 likec
between || multiset member submultiset Symbole "* inséré avant "A" pour continuer. ORA-06550: Ligne 42, colonne 13
: PLS-00103: Symbole "A" rencontré a la place d'un des symboles suivants : * & = - +; < / > at in is mod remainder

not rem <exposant (™)> <> or!=

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 24

Express the APl as a Set of
JSON-In/ JSON-Out Procedures

ed 25

Client-side environments have different type systems than YSQL

e JSON was invented as a generic data interchange format between systems with
different type systems

e All modern client-side programming environments have built-in functionality to
transform, in each direction, between an arbitrarily complex compound value and its
JSON representation

e YSQL inherits PostgreSQL’s corresponding built-in functionality

e The natural, easy, and best design choice is to parameterize the hard shell API
as JSON-in / JSON-out procedures
o “REST, JSON, And All That: A Memorable History of Client/Server communication”

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Why express the API as procedures and not functions?

e Procedures and functions are different

e A procedure does something
o It'sinvoked with the call statement—meaning “do this”
o It’s named with an imperative verb (phrase)
o Butitcan also have “out” arguments

e A function names a computed value
o It’sinvoked as aterm in an expression (in SQL or in PL/pgSQL)
o It's named with an noun (phrase)—just as you name a column or a variable
o Functions should not have side-effects
o So afunction with “out” arguments is a nasty anti-pattern

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Every single APl subprogram might need to do something

e Something can always go wrong—like with the Oracle Partner Store’s ORA-06550
o Evenaquerycangowrong if it expects exactly one row for a business unique key
o |t might get no rows — like you mentioned a non-existent order number
o It might get many rows — meaning and earlier constraint-enforcement error

e Such application errors must never escape the database
o the ORA-06550 error says that the app constructed a subprogram
that had a syntax error

e Sothese “unexpected” errors (i.e. developer bugs) must be recorded in an incidents table
o Inserting arow is doing something!

@' yugabyte Yugabyte © 2022 - All Rights Reserved

The Use Case for the Demo App

(2) yugabyte Yugabyte © 2022 - All Rights Reserved 29

Classic (agnostic) master-details Create and Read

create table data.masters(
mk uuid default gen_ random uuid()
constraint masters pk primary key,
v text not null
constraint masters v_ung unique
constraint masters v _chk check(length(v) <= 10));

create table data.details(
mk uuid,
dk uuid default gen random uuid(),
v text not null,

constraint details pk primary key(mk, dk),
constraint details fk foreign key (mk)

references data.masters (mk)
match full

on delete cascade

on update restrict,

constraint details mk v_unqg unique (mk, v));

g yugabyte Yugabyte © 2022 - All Rights Reserved

Create new master and details or new details for existing master (bad)

create type m_and ds_ as(m text, ds text[]);

create procedure do_insert(this in m_and ds)
language plpgsql

as $body$

declare

begin
begin
insert into masters(v) values(this.m) returning mk into new_mk;
exception when unique violation then
select mk into new_mk from masters where v = this.m;
new _master := false;
end;

if cardinality(this.ds) > 0 then
-- Notorious anti-pattern: many single row SQLs in a loop.
foreach d in array this.ds loop
insert into details(mk, v) values(new_mk, d);
end loop;
end if;
end;
$body$;

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Aside — Brief tutorial on “cross join lateral” with “unnest(arr)”

create table t(
m text not null,
d text not null,
constraint t_pk primary key(m, d));

create type facts as(m text, ds text[]):;

with c(v) as (
select ('Joe', array|['fork', 'spoon', 'knife'])::facts)
insert into t(m, d)
select (c.v).m, arr.d
from
c
cross join lateral
unnest((c.v) .ds) as arr(d);

select m, d from t order by m, d;

_____ +_______
Joe | fork
Joe | knife
Joe | spoon

g yugabyte Yugabyte © 2022 - All Rights Reserved

Create new master and details or new details for existing master (good)

create type m_and ds_ as(m text, ds text[]):
create type mk _and ds_ as(mk uuid, ds text[]);

create procedure do_insert(this in m_and ds)
language plpgsql

as $body$

declare

begin
begin
insert into masters(v) values(this.m) returning mk into new_mk;
exception when unique violation then
select mk into new_mk from masters where v = this.m;
new _master := false;
end;

if cardinality(this.ds) > 0 then

-- Optimal: on single "bulk" SQL.

with c as (

select (new_mk, this.ds)::mk_and ds_as v)

insert into details(mk, v)

select (c.v).mk, arr.d

from c cross join lateral unnest((c.v).ds) as arr(d);
end if;

Yugabyte © 2022 - All Rights Reserved

Recap — Anti-pattern: insert many “details” rows one-by-one in a loop

create procedure do_insert(this in m _and ds)
language plpgsql

as $body$

declare

begin
begin
insert into masters(v) values(this.m) returning mk into new _mk;

exception when unique violation then
select mk into new mk from masters where v = this.m;

new _master := false;
end;

if cardinality(this.ds) > 0 then
foreach d in array this.ds loop
insert into details(mk, v) values(new mk, d);
end loop;

end if;
end;
$bodys$;

g yugabyte Yugabyte © 2022 - All Rights Reserved

Recap — Optimal: insert many “details” rows with one single “bulk” SQL

create procedure do_insert(this in m _and ds)
language plpgsql

as $body$

declare

begin
begin
insert into masters(v) values(this.m) returning mk into new _mk;
exception when unique violation then
select mk into new mk from masters where v = this.m;
new _master := false;
end;

if cardinality(this.ds) > 0 then
with c as (
select (new_mk, this.ds)::mk _and ds_as v)
insert into details(mk, wv)
select (c.v).mk, arr.d
from c cross join lateral unnest((c.v).ds) as arr(d);
end if;
end;
$body$;

g yugabyte Yugabyte © 2022 - All Rights Reserved

Read existing master and its details

create type m_and ds_ as(m text, ds text[]):

create function master and details report(mv_in in text)
returns m_and ds__
language plpgsql
security definer
as $body$
declare
m _and ds m_and ds_;
begin
select m.v, array agg(d.v order by d.v)
into m_and ds
from
data.masters m
left outer join
data.details d
using (mk)
where m.v = mv_in
group by 1
order by 1;

return m_and ds;

end;
Sbody$;

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 36

The App-Specific
JSON-In / JSON-Out Protocol

ed 37

procedure insert_master_and_details(j in text, j_outcome inout text)

No problems

call insert master_and details(
"{"m": "Mary", "ds": ["shampoo", "soap", "toothbrush", "towel"]}', '');

— {"status": "success"}

New-master cannot have dup details

{"m": "Arthur", "ds": ["scissors", "saucer", "spatula", "spatula", "scissors"]}
— {"reason": "New master 'Arthur' bad duplicate details: 'scissors', 'spatula',",
"status": "user error"}

Program bug: forgot to cater for masters_v_chk violation
{"m": "Christopher", "ds": []}', '')

— {"status": "unexpected error", "ticket": 1}

@' yugabyte Yugabyte © 2022 - All Rights Reserved

TICKET NO. 1

unit: procedure code.insert master and details(text, text)

returned sqlstate: 23514

message_ text: new row for relation "masters" violates check constraint "masters v_chk"
pg_exception detail: Failing row contains (cc93bd34-bé68a-4d47-b9%e9-0033031cefb7, Christopher).
constraint name: masters_v_chk

table name: masters

schema name: data

pg_exception context

SQL statement "insert into data.masters(v) values(m_and ds.m) returning mk"

PL/pgSQL function code.insert master and details(text,text) line 17 at SQL statement
SQL statement "call code.insert master and details(j, outcome)"

PL/pgSQL function insert master and details(text,text) line 3 at CALL

Q)’ yugabyte Yugabyte © 2022 - All Rights Reserved

procedure do_master_and_details_report(j in text, j_outcome inout text)

No problems

call do_master_ and_details_report(

'{llkeyll . HMaryH} v , |l l) ;

— {"status": "m-and-ds report success",
"m and ds": {"m": "Mary", "ds": ["shampoo", "soap", "toothbrush", "towel"]}}

Bill doesn't exist
{ llkeyll : "Bill" }

— {"reason": "The master business key 'Bill' doesn't exist", "status": "user error"}

Application program bug: typo "ket" for "key"
{"ket": "Fred"}

— {"reason": "Bad JSON in: {\"ket\": \"Fred\"}", "status": "client code error"}

g yugabyte Yugabyte © 2022 - All Rights Reserved

Users and Schemas: Refined Picture

{ Z) yugabyte Yugabyte © 2022 - All Rights Reserved 41

data

-

code

—

usage

)

—

select,

api

. —

@

usage

)

_—

execute

insert,
update,
delete

LY yugabyteDB

usage

execute

“app” database

:’:

Yugabyte © 2022 - All Rights Reserved

42

LY yugabyteDB

O

data code api client
@< @< —O
< o @< @ -
9 .
(=) .
Q
o, -
o :
)
s n
) .
-:I .
(o] U
- h -] o~ "
§ : g :
" = = =
“app” database

Yugabyte © 2022 - All Rights Reserved 43

LY yugabyteDB

data code json api client
@< @< @< n®
o @ @< @« —CO
£ -
c |]
= hl u
= .
S S :
() o~
o, %o :
®°)
. |]
2 n. -
] = .
<
S o .:' .
L) ° o [
s e 8 > .
" = = =
“app” database

Yugabyte © 2022 - All Rights Reserved 44

app_.admin

...

...
o

e® ©

tils © [_ utils

eric u

LY yugabyteDB

client

Yugabyte © 2022 - All Rights Reserved

O

data code json api
@< @< @< n®
o @< @< @« -
£ -
c |]
= hl u
= .
3 S :
() o~
o, %o -
®° -
o w® .
v o
2 n. .
] = .
<
S Y o .
~ o o~ "
s e 8 > .
" = = =
“app” database

45

app_.admin support data code json api client

- = = = 3
Gg0 o4 <9< o< o< O -
®e PN - @« o @« —0 .
%0 . ° ° . .
£ - -
< " =
Q nl " n

< =
3 S : :
o 2 - .
o, %o - -
®° : :
& o° -

<% : -
3 5 . i
< £ . i
S L ' -
~ <] g ~— " n
3 S 2, 3 : .

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 46

app_.admin support utils data code json api client

Gg0 o4 ®e <0< o< o< O -
oo °® -—@= o o —0 .
0e° o o .
e O £ - .
il T . S : :
S S . .
m o : -
i il o, e, : _
v m o : .
: | |
2 g 3 s .- L
5 3 S 2 & : :
“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 47

postgres app_admin

support

LY yugabyteDB

client

utils data code json api
oo <“—-0< o< o< O
< o @< @t @« -
g :
i T . C :
< .
i L -
i — -
il o, %o -
1 o :
2 Q. .
] = .
=
(%] (=] %' .:' -
- - o =~ "
5 s e 8 > :
“app” database

O

Yugabyte © 2022 - All Rights Reserved 48

postgres app.admin support ga utils data code json api client
- = = = g
) “—o @ ' 2 —0 .
o o = n
£ - -
i 5 L
m . || -
< .
i 3 S : :
0 = = L
0 .| [N
T > -
G @ 0 ® : .
.; Y a L] .
=I % & L n
S [Y) . .
=

% " (=] %I .:') -
e ~ o o~ " n
= s 3 S 2, S ; :
" = = = =

“app” database

LY yugabyteDB Yugabyte © 2022 - All Rights Reserved 49

postgres app.admin support ga utils data code json api ga client

- = = = 3
® Gg0 o4 ® ®o <9< o< o< O -
@ L X J PY e @ @« —0
9° 3 o o .
@ g . .
1 5 L
I ¢ | .
S -
S S i -
i — .
1 o, | %o Y : -
m [] -
K 0 v ® . -
S v ~ .
> Q Q_ O n
!] >) .
S < < B . .
(2] | .
2 2 2 3 S 3 o | :
(=] = (=) o = Q. (=] -
o S o o a S Sy .
. [9

“app” database

g yugabyteDB Yugabyte © 2022 - All Rights Reserved 50

ga utils data code json api ga client

support

postgres app_admin

O
O

uonpjnwisTin bh

®
o ® 3apoonb

“ 1dn
¢ o

“ wiys-uosf ® (] Ew&uc “uosf
¢ o

% i apod @ S/adjayapod

vy

EE -

° B B B
o _Hm_um_um_”m sjin

o sjian"uosf nb

@ Smnoi

“app” database

51

Yugabyte © 2022 - All Rights Reserved

LY yugabyteDB

order of installation in development shop

>

postgres app.admin support ga | utils data code json api ga client
I - = = = 3
o ®g0 ®e ® I ®e < @ o o O -
e o6 |4 -—o% o o~ —O .
(=)

o “ g = " .
e S I = 50 | . .
@ S “ s @ .

v 1 I Q :' §)
t (=) U)I " [
Bl S 2, B ©
I SN
I s . .
® i o, %o ® :
[T °° ® - :
(%] \n (]
2 ~ g 0 B - :
=) w)
S S =N Q. . .
o | | o = v .
o~ < = "
E 9’ I q,| .=| (=] " []
E] 2 - 3 5 3 s |
> 1| S S S Qa S o . .
. [9
|
|

application-agnostic objects

LY yugabyteDB

application-specific objects

Yugabyte © 2022 - All Rights Reserved 52

order of installation in deployed site

postgres app.admin support
® Gg0 o4
o o0
00° ® -
e® O

application-agnostic objects

LY yugabyteDB

data code json api
<@ ® ® O
<+ o @< o o« :
£ -
: L}
o “ .
g~ = -
o = .
(Y] o~
o, %o -
e °)
o w® .
5 o

=3 Y "
g | |3 ;
S ' .:l)
~ ~— "
S 3 S S :

= (%) o~ S
[]

>

client

application-specific objects

O

Yugabyte © 2022 - All Rights Reserved 53

compare with the simple prototype

data

code

0

o &

usage

J
—

[P

api

usage

J
_—

LY yugabyteDB

‘

usage

Ll

execute

select, execute
insert,
update,
delete
“app” database

Yugabyte © 2022 - All Rights Reserved

54

Comparing the final concept with the prototype

e Modularity (separation of skills and concerns using roles and/or schemas)

o Ordinary SQL DMLs separated from JSON shim
o Development-shop-only code separated out
m QA code added
m ‘“list my objects” views and table functions added

e Reusability of the overall design concept

o Application-agnostic components separated out
m JSON schema compliance code parameterized (with own, separate QA)
m Support subsystem

e Performance

o Model accommodates dedicated development shop performance testing code

Q)’ yugabyte Yugabyte © 2022 - All Rights Reserved

And Now the Stage is Set...

Over to the Live Demos

{ Z) yugabyte Yugabyte © 2022 - All Rights Reserved 56

Summary

{ Z) yugabyte Yugabyte © 2022 - All Rights Reserved 57

The Benefits of encapsulating the database behind a hard shell API

e Correctness
o Separation of skills and concerns
o Theright experts own their own tersely coupled modules
o Datatype safety

e Security
o Controlled access to objects — client-code can’'t change or read tables
o Allthat you can dois call proci(...), call proc2(...), ...
o Implicit, effortless, SQL-injection proofing

e Performance
o Minimization of client-server round trips
o Prepare-execute paradigm with no coding effort

@' yugabyte Yugabyte © 2022 - All Rights Reserved

Thank You

yugabyte.com/slack (#yftt channel)
github.com/yugabyte/yugabyte-db

\/ I_I _-|_I _-|—YlugabytoDB
I ey

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

