
Yugabyte © 2022 – All Rights Reserved

Working with JSON in YSQL
Bryn Llewellyn

Friday, 3-June-2022

https://postgresql.life/post/bryn_llewellyn/

Yugabyte © 2022 – All Rights Reserved

● Stands for JavaScript Object Notation

● A format for the serialization of hierarchically structured data — defined in RFC 7159

● Described just as a “data interchange format” for transporting data from

one richly typed system to another — no operations specified

● Usually called a document because its representation is ordinary Unicode text

● Can represent values of four primitive data types: string, number, boolean, and null

● And of two compound data types: object (key-value pairs) and array (of values)

● Each object value, and each array value, can be primitive or compound —

indefinitely deeply

What is JSON?

2

Yugabyte © 2022 – All Rights Reserved

● Specified and first used in 2001

● Soon used as the key-value payload by various NoSQL databases (e.g. MongoDB)

● Programming languages brought libraries for constructing JSON documents,

for extracting values at specified paths, concatenating, comparing, and editing JSON

documents, and so on

● PostgreSQL brought JSON support in Version 9.2 (September 2012) with

the (plain) json and jsonb datatypes—and functions and operators for their values

● Implements the same general JSON functionality that client-side programming

languages and MongoDB do — but with its own operator syntax and function names

JSON in NoSQL and SQL

3

Yugabyte © 2022 – All Rights Reserved

SQL > NoSQL> Distributed SQL… so why is JSON relevant in YSQL?

4

1970 — Codd’s seminal paper “A Relational Model of Data for Large Shared Banks”

1979 — Commercially RDBMSs first become available

2005 — The NoSQL “key-value” fashion is born (Google Bigtable & later Apache Cassandra,...)

2009 — MongoDB supports JSON operations to let keys have rich compound values

2012 — Google Spanner acknowledges that key-JSON pairs are a poor substitute

 for Codd’s time-honored paradigm by marrying SQL with NoSQL’s plumbing

2019 — YugabyteDB puts PostgreSQL’s actual upper half on top of NoSQL’s plumbing

2022 — Yugabyte, Inc. is thriving…

 and YSQL invevitably supports all of Postgres’s JSON features…

 but doesn’t the advent of Distributed SQL make this impressive fact irrelevant?

www.cockroachlabs.com/blog/history-of-databases-distributed-sql/

http://www.cockroachlabs.com/blog/history-of-databases-distributed-sql/

Yugabyte © 2022 – All Rights Reserved

● JSON data types and functionality in the YugabyteDB YSQL doc
covers what the Postgres doc covers
but with many more self-contained, runnabe, examples

● JSON functions and operators
the subsection describes about thirty-five of these

● my blog post on: blog.yugabyte.com

References

5

https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/
https://blog.yugabyte.com/document-data-modeling-in-yugabytedb-with-the-json-data-types/
https://blog.yugabyte.com/document-data-modeling-in-yugabytedb-with-the-json-data-types/

Yugabyte © 2022 – All Rights Reserved 6

01-examples-of-json-values-and-value-extraction.sql

::jsonb (from text — implicit)

::text (from jsonb — explicit)

the -> operator

https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/typecast-operators/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/typecast-operators/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/subvalue-operators/

Yugabyte © 2022 – All Rights Reserved

● YSQL has two data types for JSON values
for use in table columns, in SQL, in PL/pgSQL, …

○ (plain) json holds the text value — but checks that it is well-formed

○ jsonb holds a parsed representation of the document’s tree

● Of course, it’s slightly quicker to typecast text to (plain) json than to typecast text to jsonb

● But all subsequent operations are quicker on jsonb values than on (plain) json values

Use jsonb — don’t use (plain) json

7

Yugabyte © 2022 – All Rights Reserved 8

02-typecasting-text-to-json(b)-to-text.sql

::jsonb (from text — explicit)

::text (from jsonb — explicit)

jsonb_pretty()

https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/jsonb-pretty/

Yugabyte © 2022 – All Rights Reserved

● The two object values:

○ j1 := '{"x": 42, "y": null}'::jsonb
○ j2 := '{"x": 42}'::jsonb

have the same semantics w.r.t. value extraction so that, here:

○ j1->>'y' is null AND j2->>'y' is null

● But, surprisingly:

○ j1 != j2

● This can really bite you if you don’t explicitly acknowledge this in some tests.

About '{"x": 42, "y": null}'::jsonb and '{"x": 42}'::jsonb — BEWARE!

9

Yugabyte © 2022 – All Rights Reserved 10

03-jsonb-null-semantics.sql

::jsonb (from text — explicit)

::text (from jsonb — explicit)

jsonb_populate_record()

to_jsonb()

the ->> operator

https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/jsonb-populate-record/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/to-jsonb/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/subvalue-operators/

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved

Populating It
Creating Indexes and Constraints
Testing the Constraints

11

table j_books(
 k ... primary key,
 book_info jsonb not null)

11

Yugabyte © 2022 – All Rights Reserved 12

the -> and ->> operators

jsonb_typeof()

jsonb_object_keys()

jsonb_array_length()

04-create-and-populate-j-books-table.sql

05-alter-j-books-add-indexes-and-constraints.sql

06-do-manual-constraint-violation-tests.sql

https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/jsonb-typeof/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/jsonb-object-keys/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/jsonb-array-length/

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved 13

Ad hoc JSON Queries

13

Yugabyte © 2022 – All Rights Reserved 14

the -> and ->> operators

the ? operator

the @> operator

jsonb_array_elements()

CROSS JOIN LATERAL and WITH ORDINALITY

07-query-the-j-books-table.sql

PG doc: https://www.postgresql.org/docs/current/queries-table-expressions.html

Laurenz Albe: https://www.cybertec-postgresql.com/en/cross-join-in-postgresql/

https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/key-or-value-existence-operators/#the-160-160-160-160-operator
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/containment-operators/
https://docs.yugabyte.com/preview/api/ysql/datatypes/type_json/functions-operators/jsonb-array-elements/
https://www.postgresql.org/docs/current/queries-table-expressions.html
https://www.postgresql.org/docs/current/queries-table-expressions.html
https://www.cybertec-postgresql.com/en/cross-join-in-postgresql/

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved

Transforming from JSON to Relational
Transforming from Relational to JSON
Proving that JSON and Relational Representations
 are Semantically Identical

15

Two Representations of the Same
Information:
 JSON and “Classic” Relational

15

Yugabyte © 2022 – All Rights Reserved

Deduce the relational model by eyeballing the eight JSON documents

16

● Each book must have at least one author.
Each author may be among the authors
of one or several books.

● Each book may be of exactly one (known) genre.
Each genre may classify one or several books.

book
ISBN
* title
* publication year
 . . .

genre
name

author
given name
family name
 . . .

Yugabyte © 2022 – All Rights Reserved

the -> and ->> operators

jsonb_typeof()

jsonb_populate_record()

jsonb_array_length()

to_jsonb()

17

08-create-j-books-r-view-and-populate-r-books.sql

09-create-r-books-j-view.sql

10-assert-j-books-r-books-j-view-identical.sql

Yugabyte © 2022 – All Rights Reserved

● If the incoming JSON adheres to a stable schema, then you’ll probably want to “shred” it

into a classic relational representation.

● If:

○ the incoming JSON’s schema changes periodically, or

○ a typical incoming document uses only some of the attributes that the schema

allows

● then you’ll probably want the DML-time flexibility that comes from a table with a PK and

a jsonb payload.

● You might want a hybrid approach: several classical columns with appropriate SQL data

types (and esp. FKs to reference table rows) together with a jsonb “flex-field” column.

Which representation meets your needs?

18

Yugabyte © 2022 – All Rights ReservedYugabyte © 2022 – All Rights Reserved

Only JSON Gives the Flexibility You Need
to Return Expected Results
or an Explanation of an Expected User-Error

19

Bonus: Do Try This at Home!
Hide the Internals of Your App’s
Database Module Behind
an Impenetrable PL/pgSQL API

19

Yugabyte © 2022 – All Rights Reserved

select insert_master_and_details_status(
 '{"m": "John", "ds": ["kettle", "pitcher", "saucepan"]}'::text);

 → {"status": "success"}

select insert_master_and_details_status(
 '{"m": "John", "ds": ["knife", "fork", "saucepan"]}'::text);

 → {"reason": "Existing master \"John\" already has detail \"saucepan\"", "status": "user error"}

select master_and_details_report('{"key": "John"}'::text);

 → {"status": "success", "m_and_ds": {"m": "John", "ds": ["kettle", "pitcher", "saucepan"]}}

select master_and_details_report('{"key": "Bill"}'::text);

 → {"reason": "The master business key \"Bill\" doesn't exist", "status": "user error"}

Demo

20

Yugabyte © 2022 – All Rights Reserved

select master_and_details_report('{"ket": "Fred"}'::text);

 → {"status": "unexpected error", "ticket": 42}

ticket | 42
unit | function function master_and_details_report(text)
returned_sqlstate | 22004
column_name |
constraint_name |
pg_datatype_name |
message_text | null value cannot be assigned to variable "mv_in" declared NOT NULL
table_name |
schema_name |
pg_exception_detail |
pg_exception_hint |
pg_exception_context | PL/pgSQL function master_and_details_report(text) line 15 during statement
 block local variable initialization

Demo — cont.

21

Yugabyte © 2022 – All Rights Reserved

Thank You
Join us on Slack: yugabyte.com/slack (#yftt channel)

Star us on Github: github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

