
© 2022 – All Rights Reserved 1

Performance

Accelerate Mission Critical
Apps with our Top Tips and
Tricks to Optimize Speed

© 2022 – All Rights Reserved

Performance Tuning

Speed costs money, how fast do you want to go?

2

○ The most obvious thing is to throw money at a problem in terms of infrastructure spend, but what

we are exploring here is the time invested in optimizing an application/database system.

○ There is no single magic bullet that fixes all problems

○ The techniques discussed here are usually employed in depth via an iterative process.

© 2022 – All Rights Reserved

Performance Tuning

Areas of Focus

3

○ Data modeling

○ Performance Structures

○ Flags and Session Tunables

© 2022 – All Rights Reserved 4

Data Modeling

© 2022 – All Rights Reserved

Performance: Data Modeling

5

© 2022 – All Rights Reserved

Performance: Data Modeling

6

● Prefer defining a primary key for each table
○ YSQL tables are index-organized by the primary key
○ Ideally primary-key is the most-commonly used "index"

● Ideally each common query pattern can use an index or the primary key
○ e.g. Index columns should cover as much of the WHERE clause as possible

■ Rule of thumb: columns with stricter restrictions should come earlier in the key
■ e.g. PRIMARY KEY(b, a) is better if query pattern is b = 1 AND a IN (1, …, n)

● For both primary key and index keys we support:
○ hash-based splitting (HASH)

● default: PRIMARY KEY(a, b) → PRIMARY KEY(a HASH, b ASC)
● multi-column: PRIMARY KEY((a, b) HASH, c ASC)

○ range-based splitting (ASC/DESC)
■ PRIMARY KEY(a ASC, b DESC, c ASC)

© 2022 – All Rights Reserved

Performance: Data Modeling

Choice 1: Hash splitting

7

○ Pros
○ Tables and indexes can be automatically pre-split

■ Ops can scale immediately
■ With a good hash key hot shard problem is rare

○ When a natural hash-key exists offers immediate and future-proof scalability

○ Tradeoffs and concerns
○ HASH key needs to be fully specified to compute hash and identify target tablet

■ e.g. h1 = 1 AND h2 >= 2 → means fan-out query if (h1, h2) is the hash key

○ HASH component needs enough unique values to ensure good hash distribution
■ Else only a few tablets could be used, or they could be split unevenly
■ Rule of thumb: count at least an order of magnitude larger than tablet count

○

© 2022 – All Rights Reserved

Performance: Data Modeling

Choice 2: Range Splitting

8

● Pros
○ More compatible with existing Postgres semantics
○ Can handle inequality or sorting (ORDER BY) conditions

● Tradeoffs and concerns
■ Cannot be automatically pre-split (split bounds depend on actual data)

● Tablets will dynamically split once they become too large
■ Can be more susceptible to hot shards

● size and IOPS-based dynamic splitting can mitigate the issue
■ A prefix of the key is needed to identify right tablet (or set of tablets)

● e.g. r2 >= 2 will be a fanout query if key is (r1 ASC, r2 ASC)

© 2022 – All Rights Reserved

Performance: Data Modeling

Trick: Change the primary key from a synthetic key to a natural key

9

○ Let’s say that I had the following table

○ CREATE TABLE users (userid BIGINT NOT NULL PRIMARY KEY, email_address TEXT NOT

NULL, name TEXT NOT NULL, …)

○ CREATE UNIQUE INDEX email_users ON users(email_address);

○ For the sake of argument, I will also have a FK on the userid column to multiple tables

○ If 90% of my queries use email_address as the key, then I have 2 RPCs for query, one for the index

and then another for the attributes in the main table

© 2022 – All Rights Reserved

Performance: Data Modeling

Trick: Change the primary key from a synthetic key to a natural key

10

○ To save this extra RPC without changing the application or the structure of the database:

○ CREATE TABLE users (userid BIGINT NOT NULL, email_address TEXT NOT NULL,

name TEXT NOT NULL, …, PRIMARY KEY (email_address))

○ CREATE UNIQUE INDEX userid_users ON users (userid)

© 2022 – All Rights Reserved

Performance: Data Modeling

Trick: Group less often referenced columns into JSONB structures

11

○ Each column is a separate write into DocDB - So more columns = more writes. This is less true

starting in 2.15 with “packed” rows, but still a useful technique.

○ Multiple columns can be condensed into the JSONB column and still be referenced and indexed. It

also allows for a degree of flexibility during schema evolution since new columns can be added

without DDL updates.

○ JSONB columns can be included in covering indexes

© 2022 – All Rights Reserved

Performance: Data Modeling

Tip: Use the right number of tablets for each table

12

○ If the table is less than 1 million rows and it is a low velocity table, place it either in it’s own tablet

or in a colocated tablespace (E.g. CREATE TABLE xxx SPLIT INTO 1 TABLETS)

○ If the table is between 1 and 10 million rows and it is a low->medium velocity table, allocate 1

tablet per node.

○ If the table is over 10 million rows and/or is high-velocity allocate multiple tablets per node. Scale

the number of tablets/node based on the magnitude of how many rows it is.

© 2022 – All Rights Reserved

Performance: Data Modeling

Tip: Things to avoid / be cautious about

13

○ Sequences and serial columns should be avoided. If you must use them for backward

compatibility/application integrity, make sure to ALTER SEQUENCE seq_name CACHE n, where n

should be the number of INSERTS you expect to do per minute.

○ Formerly, sequences were stored on the master tablet in yb-master, but now are stored and

cached on the tservers, but still can create hot-spots or delays in fetching new values

○ Use guid/uuid where possible

○ If you are placing indexes on DATE/TIMESTAMP columns, do not make them the HASH key. Use

RANGE sharding discussed earlier.

© 2022 – All Rights Reserved

Performance: Data Modeling

Tip: Manage Cluster configuration with tablespaces

14

Leader Affinity

○ Set up fine-grained leader priority to a particular region

○ Can ensure proxy and data nodes are often or always in the same region

○ Reduces latency and network cost

Geo-partitioning

○ Split a logical table into multiple partitions (one per region)

○ Each partition can be pinned to its specific region

○ Ensure multi-region application can operate with minimal latency

© 2022 – All Rights Reserved

Performance: Data Modeling

Tip: Tablespaces with Leader Affinity

15

© 2022 – All Rights Reserved

Performance: Data Modeling

Tip: Manage Cluster configuration with tablespaces (Leader Affinity)

16

CREATE TABLESPACE us_west_2_tablespace WITH (replica_placement='{"num_replicas": 3,

"placement_blocks":

[{"cloud":"aws","region":"us-west-2","zone":"us-west-2a","min_num_replicas":1,"leader_preference":1},

{"cloud":"aws","region":"us-west-1","zone":"us-west-1a","min_num_replicas":1,"leader_preference":2},

{"cloud":"aws","region":"us-east-1","zone":"us-east-1a","min_num_replicas":1}]}');

© 2022 – All Rights Reserved

Performance: Data Modeling

Tip: Tablespaces with Geo-partitioning

17

© 2022 – All Rights Reserved 18

Performance Structures

© 2022 – All Rights Reserved

Performance: Performance Structures

Tip: Use covering indexes to reduce the number of fetches to the base table

19

○ INCLUDE syntax can be used to add regular (non-key) columns to a secondary index
○ If an index contains all selected columns it can skip the table lookup

○ Can reduce the number of RPCs by around half for a typical index read
○ Tradeoff: An index needs to be updated when either the indexed or included columns are

modified

CREATE TABLE t2(k int PRIMARY KEY, v1 int, v2 int, v3 int);
CREATE INDEX ON t2(v1) INCLUDE (v3);

EXPLAIN SELECT v3 FROM t2 WHERE v1 = 10;
 QUERY PLAN

 Index Only Scan using t2_v1_v3_idx on t2 (cost=0.00..5.12 rows=10 width=4)
 Index Cond: (v1 = 10)
 -- Go to the index to identify the row and get the value of v3

© 2022 – All Rights Reserved

Performance: Performance Structures

Trick: Use partial indexes to reduce the number of writes and size of indexes

20

○ WHERE syntax can be used to only index a subset of the rows
○ Query planner will know to only use the index if the WHERE clause matches

○ Reduce index size and overhead
○ Useful when index-based search always sets a particular filter

■ e.g. Avoid indexing null values if we always search for non-null values

CREATE TABLE t2(k int PRIMARY KEY, v1 int, v2 int, v3 int);
CREATE INDEX ON t2(v1) INCLUDE (v3) WHERE v1 IS NOT NULL;

INSERT INTO t2 VALUES (1, null, 2, 3); -- skip write to the partial index

EXPLAIN SELECT v3 FROM t2 WHERE v1 = 10;
 QUERY PLAN

 Index Only Scan using t2_v1_v3_idx on t2 (cost=0.00..4.90 rows=10 width=4)
 Index Cond: (v1 = 10)
-- Condition implies target v1 is not null, so partial index is applicable

© 2022 – All Rights Reserved

Performance: Performance Structures

Trick: Use duplicate indexes in zonal/regional tablespaces to force local reads

21

○ We can create duplicate indexes in different geographies to ensure local reads that are strongly

consistent.

○ Useful for small reference data type tables.

○ There is a marginal uplift in write latency for each additional index

○ Index-only tables are limited to 32 columns total (PG limitation)

© 2022 – All Rights Reserved 22

Flags and Session Tunables

© 2022 – All Rights Reserved

Performance: Flags and Session Tunables

Tip: Use yb_enable_expression_pushdown

23

○ Processing query conditions using index (WHERE clause)

○ DocDB scanning the minimal subset of rows based on the predicate

○ In-memory filter (remote or local) of additional non-index columns

○ Pushes expressions down to DocDB on remote nodes to avoid filter when coming back to

the local node

○ Enabled at the session level

○ SET yb_enable_expression_pushdown to on;

○ Can also be enabled universe-wide by using Gflag ysql_pg_conf_csv

© 2022 – All Rights Reserved

Performance: Flags and Session Tunables

Follower Reads

24

© 2022 – All Rights Reserved

Performance: Flags and Session Tunables

Tip: Use yb_read_from_followers

25

○ Allows rows to be read from the local fault domain even if it is not the leader

○ Must be used in conjunction with read_only transactions

○ Hint, session level, BEGIN, application method annotation (Hibernate/Spring)

○ If not in read_only transaction, reads will always go to the leader

○ Staleness of data can be controlled by yb_follower_read_staleness_ms

○ Enabled at the session level

○ SET yb_enable_expression_pushdown to on;

○ Can also be enabled universe-wide by using Gflag ysql_pg_conf_csv

© 2022 – All Rights Reserved

Performance: Flags and Session Tunables

Tip: Enable GFlag ysql_enable_packed_row = true

26

○ Available in 2.15+

○ Traditionally, rows have been stored as (k1,c1), (k1,c2),...,(k1,cn) with the associated hybrid times

○ New format is (k1, c1, c2, … cn)

○ Reduces space amplification as well as reduces latency on read/write operations

○ Individual fields are still updated, and if all non-key columns are updated in an UPDATE statement,

it is written as a packed-row.

○ Compaction re-merges UPDATEs done to non-key columns

© 2022 – All Rights Reserved

Summary

27

○ Performance tuning is an iterative process and an art
○ Requires investment of time and willingness to think in terms of the DistributedSQL model
○ Future enhancements may obviate some of these techniques
○ These are the most common tricks that have yielded high returns, so this is not an exhaustive

list

© 2022 – All Rights Reserved

Closing Announcement

28

© 2022 – All Rights Reserved 29

Thank You
Join us on Slack: yugabyte.com/slack

Star us on Github:
github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

