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PostgreSQL Compatibility

Read Committed Isolation & 
Pessimistic Locking
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Why compatibility?
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Why compatibility?

Scaling your existing app should be straightforward

NO to “our db scales flawlessly & is fast but we don’t 
support this yet, can your app workaround this?”
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Wire - does the db work with existing Postgres drivers, same byte format, serialization etc.

Syntax - would the same syntax as PostgreSQL work?

Feature - parity in terms of different functionalities: triggers, stored procedures, gin indexes, etc

Runtime - matching execution semantics. An app shouldn’t be able to say whether the db point is 
PostgreSQL or something else (barring any theoretical performance differences that stem from 
distribution)

Levels of compatibility
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Compatibility at the transactional layer is
even more important because……



© 2022 – All Rights Reserved 8

ACID transactions -> tricky

Compatibility at the transactional layer is
even more important because……
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ACID transactions -> tricky

Distributed ACID transactions -> trickier
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Clock skew

Fault tolerance & always available

Sharding, automatic shard splitting

Load balancing
Horizontal scalability

and more ….

Compatibility at the transactional layer is
even more important because……



© 2022 – All Rights Reserved

ACID transactions -> tricky

Distributed ACID transactions -> trickier
    => Impossible for the app to workaround 
incompatibility at the transactional layer
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Clock skew

Fault tolerance & always available

Sharding, automatic shard splitting

Load balancing
Horizontal scalability

and more ….

Compatibility at the transactional layer is
even more important because……
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1. Serializable (supported by YB since long)
2. Repeatable Read (supported by YB since long)
3. Read Committed (new addition to YB!)
4. Read Uncommitted (same as Read Committed)

Isolation Levels in PostgreSQL

11

Strictness of isolation increases 
bottom to top

Performance increases top to 
bottom due to lower conflicts
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Read Committed Isolation Level
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Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction
b. Apps never face serialization errors (40001), so don’t have to retry 

those
2. Read restart errors no more [stems from clock-skew due to YugabyteDB’s 

distributed nature]

Read Committed Isolation Level

13
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Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction
b. Apps never face serialization errors, so don’t have to retry 

those

Read Committed Isolation Level
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[Insert live terminal demo for point (1 & 2) here]
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Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction
b. Apps never face serialization errors, so don’t have to retry 

those
2. Read restart errors no more [specific to Yugabyte due to its 

distributed nature]

Read Committed Isolation Level
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a 2 min detour to declutter read restarts …
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[Insert live terminal demo for point (3) i.e., read restarts here]

25



© 2022 – All Rights Reserved

The Temenos High Water Benchmark In (Big) Numbers [SKIP slide]

3000
Global Banking

Customers

41/50
Of The Top

Global Banks

1.2 Bn
Global Bank
Customers

Investing

20%
Revenue in R&D

102K
Business 

Transactions
Per Second

100M
Customers

200M
Accounts

4.1x -
More Efficient
For A Smaller 
CO

2
 Footprint

+40%
Better

Performance

350K
Database Reads

Per Second

80K
Database Writes

Per Second

Inserts 3 ms
Selects 1 ms
Deletes 1 ms

39/3
     DB          AWS

Nodes        AZ

High Water
Benchmark

26



© 2022 – All Rights Reserved

Roadmap
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Track further enhancements and their progress at
https://github.com/yugabyte/yugabyte-db/issues/13557

https://github.com/yugabyte/yugabyte-db/issues/13557
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View the docs

28

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/
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Pessimistic locking



© 2022 – All Rights Reserved

On conflict, roll-back one of the conflicting txns based on priority

Deadlocks are avoided since transactions never wait

Aborts transactions unnecessarily in contentious workloads

Behavior is incompatible with PostgreSQL

Optimistic locking

30
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On conflict, wait for the blocking transaction to commit or rollback

Deadlocks are detected among waiting transactions

Aborts transactions minimally in contentious workloads

Behavior is compatible with PostgreSQL

Pessimistic locking

31
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Along with pessimistic locking, comes the problem of 
detecting distributed deadlocks.

32
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Detection happens quickly with detector triggering 1s after conflict

Deadlock Detection

33
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Detection happens quickly with detector triggering 1s after conflict

Detection is guaranteed once a deadlock is created

Deadlock Detection

34



© 2022 – All Rights Reserved

Deadlock Detection

Edge Chasing Algorithm
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Chandy and Misra, 1982 - A Distributed Algorithm for Detecting Resource 
Deadlocks in Distributed Systems

https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDead

lock.pdf

Wait-for graph is formed by considering transactions as nodes and 
waiting-status as a directed edge

Probes are sent between transaction coordinators to detect cycles 
in this graph

https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDeadlock.pdf
https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDeadlock.pdf
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Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Deadlock Detection
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Detection happens quickly with detector triggering 1s after conflict

Detection is guaranteed once a deadlock is created

Overhead is optimal requiring constant additional memory and only one probe per 
conflicting transaction. Probes could trigger many RPCs depending on wait-for graph

Deadlock Detection

42
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View our docs page for Read Committed isolation level

View our spec document for pessimistic locking

See our roadmap for this area, more exciting Items coming your way!
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Additional Resources

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/
https://github.com/yugabyte/yugabyte-db/blob/master/architecture/design/pessimistic-locking-functional-spec.md
https://github.com/yugabyte/yugabyte-db/issues/5683
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Thank You
Join us on Slack: yugabyte.com/slack

Star us on Github: 
github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

