
© 2022 – All Rights Reserved 1

PostgreSQL Compatibility

© 2022 – All Rights Reserved 2

PostgreSQL Compatibility

Read Committed Isolation

© 2022 – All Rights Reserved 3

PostgreSQL Compatibility

Read Committed Isolation &
Pessimistic Locking

© 2022 – All Rights Reserved

Why compatibility?

4

© 2022 – All Rights Reserved 5

Why compatibility?

Scaling your existing app should be straightforward

NO to “our db scales flawlessly & is fast but we don’t
support this yet, can your app workaround this?”

© 2022 – All Rights Reserved

Wire - does the db work with existing Postgres drivers, same byte format, serialization etc.

Syntax - would the same syntax as PostgreSQL work?

Feature - parity in terms of different functionalities: triggers, stored procedures, gin indexes, etc

Runtime - matching execution semantics. An app shouldn’t be able to say whether the db point is
PostgreSQL or something else (barring any theoretical performance differences that stem from
distribution)

Levels of compatibility

6

© 2022 – All Rights Reserved 7

Compatibility at the transactional layer is
even more important because……

© 2022 – All Rights Reserved 8

ACID transactions -> tricky

Compatibility at the transactional layer is
even more important because……

© 2022 – All Rights Reserved

ACID transactions -> tricky

Distributed ACID transactions -> trickier

9

Clock skew

Fault tolerance & always available

Sharding, automatic shard splitting

Load balancing
Horizontal scalability

and more ….

Compatibility at the transactional layer is
even more important because……

© 2022 – All Rights Reserved

ACID transactions -> tricky

Distributed ACID transactions -> trickier
 => Impossible for the app to workaround
incompatibility at the transactional layer

10

Clock skew

Fault tolerance & always available

Sharding, automatic shard splitting

Load balancing
Horizontal scalability

and more ….

Compatibility at the transactional layer is
even more important because……

© 2022 – All Rights Reserved

1. Serializable (supported by YB since long)
2. Repeatable Read (supported by YB since long)
3. Read Committed (new addition to YB!)
4. Read Uncommitted (same as Read Committed)

Isolation Levels in PostgreSQL

11

Strictness of isolation increases
bottom to top

Performance increases top to
bottom due to lower conflicts

© 2022 – All Rights Reserved 12

Read Committed Isolation Level

© 2022 – All Rights Reserved

Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction
b. Apps never face serialization errors (40001), so don’t have to retry

those
2. Read restart errors no more [stems from clock-skew due to YugabyteDB’s

distributed nature]

Read Committed Isolation Level

13

© 2022 – All Rights Reserved

Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction
b. Apps never face serialization errors, so don’t have to retry

those

Read Committed Isolation Level

14

© 2022 – All Rights Reserved

[Insert live terminal demo for point (1 & 2) here]

15

© 2022 – All Rights Reserved

Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction
b. Apps never face serialization errors, so don’t have to retry

those
2. Read restart errors no more [specific to Yugabyte due to its

distributed nature]

Read Committed Isolation Level

16

© 2022 – All Rights Reserved 17

a 2 min detour to declutter read restarts …

© 2022 – All Rights Reserved 18

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=2

t=5

t=5

Assume max clock skew = 8 units

k=1 v=1 @ t=0

Person X

Person Y

© 2022 – All Rights Reserved 19

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=2

t=5

t=5
Write

k=1 v=5 @ t=5

k=1 v=1 @ t=0

Assume max clock skew = 8 units

Person X

Person Y

© 2022 – All Rights Reserved 20

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=4

t=7

t=7

k=1 v=1 @ t=0
k=1 v=5 @ t=7

Assume max clock skew = 8 units

Commit

2 times units later …..

Person X

Person Y

© 2022 – All Rights Reserved 21

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=5

t=8

t=8

k=1 v=1 @ t=0
k=1 v=5 @ t=7

Assume max clock skew = 8 units

Phone call

1 time unit later …..

Person X

Person Y

© 2022 – All Rights Reserved 22

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=6

t=9

t=9

k=1 v=1 @ t=0
k=1 v=5 @ t=7

Assume max clock skew = 8 units

1 time unit later …..

Read

Person X

Person Y

© 2022 – All Rights Reserved 23

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=6

t=9

t=9

k=1 v=1 @ t=0
k=1 v=5 @ t=7

Assume max clock skew = 8 units

1 time unit later …..

Read

Person X

Person Y

© 2022 – All Rights Reserved 24

 N1 N4

 N3 N2

Raft group for some tablet
 N5

t=6

t=9

t=9

k=1 v=1 @ t=0
k=1 v=5 @ t=7

Assume max clock skew = 8 units

1 time unit later …..

Person X

Person Y

Read restart error

© 2022 – All Rights Reserved

[Insert live terminal demo for point (3) i.e., read restarts here]

25

© 2022 – All Rights Reserved

The Temenos High Water Benchmark In (Big) Numbers [SKIP slide]

3000
Global Banking

Customers

41/50
Of The Top

Global Banks

1.2 Bn
Global Bank
Customers

Investing

20%
Revenue in R&D

102K
Business

Transactions
Per Second

100M
Customers

200M
Accounts

4.1x -
More Efficient
For A Smaller
CO

2
 Footprint

+40%
Better

Performance

350K
Database Reads

Per Second

80K
Database Writes

Per Second

Inserts 3 ms
Selects 1 ms
Deletes 1 ms

39/3
 DB AWS

Nodes AZ

High Water
Benchmark

26

© 2022 – All Rights Reserved

Roadmap

27

Track further enhancements and their progress at
https://github.com/yugabyte/yugabyte-db/issues/13557

https://github.com/yugabyte/yugabyte-db/issues/13557

© 2022 – All Rights Reserved

View the docs

28

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/

© 2022 – All Rights Reserved 29

Pessimistic locking

© 2022 – All Rights Reserved

On conflict, roll-back one of the conflicting txns based on priority

Deadlocks are avoided since transactions never wait

Aborts transactions unnecessarily in contentious workloads

Behavior is incompatible with PostgreSQL

Optimistic locking

30

© 2022 – All Rights Reserved

On conflict, wait for the blocking transaction to commit or rollback

Deadlocks are detected among waiting transactions

Aborts transactions minimally in contentious workloads

Behavior is compatible with PostgreSQL

Pessimistic locking

31

© 2022 – All Rights Reserved

Along with pessimistic locking, comes the problem of
detecting distributed deadlocks.

32

© 2022 – All Rights Reserved

Detection happens quickly with detector triggering 1s after conflict

Deadlock Detection

33

© 2022 – All Rights Reserved

Detection happens quickly with detector triggering 1s after conflict

Detection is guaranteed once a deadlock is created

Deadlock Detection

34

© 2022 – All Rights Reserved

Deadlock Detection

Edge Chasing Algorithm

35

Chandy and Misra, 1982 - A Distributed Algorithm for Detecting Resource
Deadlocks in Distributed Systems

https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDead

lock.pdf

Wait-for graph is formed by considering transactions as nodes and
waiting-status as a directed edge

Probes are sent between transaction coordinators to detect cycles
in this graph

https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDeadlock.pdf
https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDeadlock.pdf

© 2022 – All Rights Reserved 36

Tablet 1

T1 -> T2

Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Deadlock Detection

© 2022 – All Rights Reserved 37

Tablet 1

T1 -> T2

Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Coordinator 1

Coordinator 2

Deadlock Detection

© 2022 – All Rights Reserved 38

Tablet 1

T1 -> T2

Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Coordinator 1

Coordinator 2

T1 -> T2

T2 -> T3
T3 -> T1

Deadlock Detection

© 2022 – All Rights Reserved 39

Tablet 1

T1 -> T2

Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Coordinator 1

Coordinator 2

T1 -> T2

T2 -> T3
T3 -> T1

probe_id
T1 -> T2

Deadlock Detection

© 2022 – All Rights Reserved 40

Tablet 1

T1 -> T2

Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Coordinator 1

Coordinator 2

T1 -> T2

T2 -> T3
T3 -> T1

probe_id
T3 -> T1

Deadlock Detection

© 2022 – All Rights Reserved 41

Tablet 1

T1 -> T2

Tablet 2

T2 -> T3

Tablet 3

T3 -> T1

Coordinator 1

Coordinator 2

T1 -> T2

T2 -> T3
T3 -> T1

probe_id
T3 -> T1

Deadlock!
!

Deadlock Detection

© 2022 – All Rights Reserved

Detection happens quickly with detector triggering 1s after conflict

Detection is guaranteed once a deadlock is created

Overhead is optimal requiring constant additional memory and only one probe per
conflicting transaction. Probes could trigger many RPCs depending on wait-for graph

Deadlock Detection

42

© 2022 – All Rights Reserved

View our docs page for Read Committed isolation level

View our spec document for pessimistic locking

See our roadmap for this area, more exciting Items coming your way!

43

Additional Resources

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/
https://github.com/yugabyte/yugabyte-db/blob/master/architecture/design/pessimistic-locking-functional-spec.md
https://github.com/yugabyte/yugabyte-db/issues/5683

© 2022 – All Rights Reserved 44

Thank You
Join us on Slack: yugabyte.com/slack

Star us on Github:
github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

