

‘ L7 yugabyteDB

™
7
i Y

@)
i Y
@)

PostgreSQL Compatibility »_,j;iﬂ,

Read Committed Isolation

‘ L7 yugabyteDB

™
7
i Y

@)
i Y
@)

PostgreSQL Compatibility »_,j;iﬂ

Read Committed Isolation &
Pessimistic Locking

s¢ |
\

g yugabyteDB © 2022 - All Rights Reserved 4

Why compatibility?

-y

Why compatibility? I..";

Scaling your existing app should be straightforward O '

NO to “our db scales flawlessly & is fast but we don’t

support this yet, can your app workaround this?” oy
g yugabyteDB © 2022 - All Rights Reserved 5

Levels of compatibility

Wire - does the db work with existing Postgres drivers, same byte format, serialization etc.
Syntax - would the same syntax as PostgreSQL work?

Feature - parity in terms of different functionalities: triggers, stored procedures, gin indexes, etc
Runtime - matching execution semantics. An app shouldn’t be able to say whether the db point is

PostgreSQL or something else (barring any theoretical performance differences that stem from
distribution)

g yugabyteDB © 2022 - All Rights Reserved

Compatibility at the transactional layer is
even more important because......

»ss |

O !

\\ E

g yugabyteDB © 2022 - All Rights Reserved 7

any

Compatibility at the transactional layer is
even more important because......

»ss |

O !

\\ E

g yugabyteDB © 2022 - All Rights Reserved 8

ACID transactions -> tricky

-y

Compatibility at the transactional layer is
even more important because......

»ssg |

ACID transactions -> tricky

Distributed ACID transactions -> trickier

-y

Fault tolerance & always available
Clock skew Sharding, automatic shard splitting \
Load balanci d
0ac RaENENI Horizontal scalability and more \

g yugabyteDB © 2022 - All Rights Reserved 9

Compatibility at the transactional layer is
even more important because......

»ss |
]

ACID transactions -> tricky

Distributed ACID transactions -> trickier
=> Impossible for the app to workaround
incompatibility at the transactional layer

-y

Fault tolerance & always available
Clock skew Sharding, automatic shard splitting \
L lanci d
oad balancing Horizontal scalability and more \

g yugabyteDB © 2022 - All Rights Reserved 10

Isolation Levels in PostgreSQL

=W e

Strictness of isolation increases
bottom to top

LY yugabyteDBE

Serializable (supported by YB since long)
Repeatable Read (supported by YB since long)
Read Committed (new addition to YB!)

Read Uncommitted (same as Read Committed)

Performance increases top to
bottom due to lower conflicts

© 2022 - All Rights Reserved 11

Read Committed Isolation Level O

2022 - All Rights Reserved

Read Committed Isolation Level

Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction '

b. Apps never face serialization errors (40001), so don’t have to retry

those
2. Read restart errors no more [stems from clock-skew due to YugabyteDB'’s

distributed nature]

g yugabyteDB © 2022 - All Rights Reserved 13

Read Committed Isolation Level

Key ideas that define “read committed” - '
1. From Postgres -
a. New snapshot per statement in the transaction '

b. Apps never face serialization errors, so don't have to retry
those

g yugabyteDB © 2022 - All Rights Reserved 14

[Insert live terminal demo for point (1 & 2) here]

g yugabyteDB © 2022 - All Rights Reserved 15

Read Committed Isolation Level

Key ideas that define “read committed” -

1. From Postgres -
a. New snapshot per statement in the transaction '

b. Apps never face serialization errors, so don't have to retry

those
2. Read restart errors no more [specific to Yugabyte due to its

distributed nature]

g yugabyteDB © 2022 - All Rights Reserved 16

a 2 min detour to declutter read restarts...

g yugabyteDB © 2022 - All Rights Reserved 17

Person Y

Person X

N4

N5

Assume max clock skew =

N2

k=1v=1

N1

N3

Raft group for some tablet

© 2022 - All Rights Reserved

Person Y

Person X

N4

N5

Assume max clock skew =

N2

k=1v=1

N1

N3

Raft group for some tablet

© 2022 - All Rights Reserved

2 times units later

Person Y

Person X

N4

k=1v=1

N2 N3

N5

Assume max clock skew =

Raft group for some tablet

© 2022 - All Rights Reserved

1 time unit later

Person Y

t=5
] N4
Phone call
t=8
N5
Person X

Assume max clock skew =

k=1v=1

N2 N3

Raft group for some tablet

© 2022 - All Rights Reserved

1 time unit later

Person Y

N4

N2

N5

Person X

Assume max clock skew =

k=1v=1

N3

Raft group for some tablet

© 2022 - All Rights Reserved

1 time unit later

Person Y

Person X

N4

N2

N5

Assume max clock skew =

k=1v=1

N3

Raft group for some tablet

© 2022 - All Rights Reserved

1 time unit later

Person Y

- :
. ead restart erro
N4 R

N5

Person X

Assume max clock skew =

k=1v=1

N2 N3

Raft group for some tablet

© 2022 - All Rights Reserved

[Insert live terminal demo for point (3) i.e., read restarts here]

g yugabyteDB © 2022 - All Rights Reserved 25

The Temenos High Water Benchmark In (Big) Numbers [SKIP slide]

Investing

3000 41/50 1.2Bn 20%

temenos Global Banking Of The Top Global Bank
Customers Global Banks Customers Revenue in R&D
102K 100M 4 1xw +40%
High Water Customers ¢ X 0
"Benchmar Business More Efficient Better
“ Transactions 2OOM For A Smaller Performance
Per Second Accounts CO, Footprint
(Y 350K 80K Imerts3ms 39/3
Datab Read Database Writ Selects 1 ms DB AWS
atabase Reads atabase Writes
YugabyteDB Per Second Per Second Deletes 1 ms Nodes AZ

g yugabyteDB

© 2022 - All Rights Reserved

26

Roadmap

[YSQL] Support READ COMMITTED isolation level #13557

®0peny pkja15 opene

3 pkj415 commented 20 days ago - Member

Jira Link: DB-3140
Description

Requirements for GA -

[YSQL] Support READ COMMITTED isolation level semantics for DMLs #9468 (present from v2.15.0.0, v2.14.0.0,
v2.13.0, v2.12.2.0)
[YSQL] Match Pg semantics for volatile functions in READ COMMITTED isolation level #1 0 (present from

Track further enhancements and their progress at st 2410

[YSQL] READ COMMITTED semantics should apply to all non-DDL statements (not just INSERT, UPDATE,

https://github.com/yugabyte/yugabyte-db/issues/13557 e L I S

v2.15.1.0, v2.14.0.0, and expected in next v2.12* release)

[YSQL] Disable lazy evaluation in functions in READ COMMITTED isolation level #1 (expected in next 2.15:*
release and all future major versions)
® [YSQL] Allow client to set isolation level after "begin;" when yb_enable_read_committed_isolation=true #12494
(this might be solved automatically once #11572 is fixed (i.e., if we are able to get rid of the savepoint based
infrastructure for READ COMMITTED isolation after #11572 is done, we wouldn't hit this issue)-

Open items & limitations (in order of priority) -

[YSQL] Integrate READ COMMITTED isolation with wait queue based pessimistic locking #132
[YSQL] Handle conflicts in READ COMMITTED by performing Pg style “READ COMMITTED Update

Checking” #11

© [YSQL] Ensure no kReadRestart/kConflict errors are thrown in a READ COMMITTED txn even if statement's
output exceeds ysql_output_buffer_size (gflag with default of 256KB). #11572 (this would be solved for kConflicts
automatically once #11573 is fixed)

© [YSQL] Enable lazy evaluation in functions in READ COMMITTED isolation level #12

O [YSQL] Non-transactional side-effects can occur more than once when a conflict/ read restart retry occurs in
functions| procedures
solved for KReadRestarts once #11572 is fixed)

this would be solved for kConflicts automatically once #11573 is fixed. It might also be

Open bugs

« © [YSQL] List of aborted sub-txns is removed by asynchronous heartbeats #13222 (present from v2.14.1.0, expected
in next 2.15.* release)

g yugabyte © 2022 - All Rights Reserved

https://github.com/yugabyte/yugabyte-db/issues/13557

View the docs

@ vusabyeos &

Joinus on 5% slack Get Started

Documentation FAQ Release Notes Q Search YugabyteDB Docs l
Docs Home
YugabyteDB documentation / Architecture / DocDB transactions layer / Read Committed On this page
Quick Start " " % Semant
Read Committed isolation level BEEZ wlspredew T
Explore = SELECT (without explicit row locking)
UPDATE, DELETE, SELECT FOR UPDATE,
Develop = Contribute = FOR SHARE, FOR NO KEY UPDATE, FOR
- KEY SHARE
Migrate =
2 s % 5 % s A o 3 . 5 & Zsies h INSERT
Read Committed is one of the three isolation levels in PostgreSQL, and also its default. A unique property of this isolation level is that clients don't need retry logic for serialization
Secure = errors (40001) in applications when using this isolation level. Usage
Examples

Launch and Manage

Benchmark
Integrations

Reference

The other two isolation levels (Serializable and Repeatable Read) require apps to have retry logic for serialization errors. Read Committed in PostgreSQL works around conflicts by
allowing single statements to work on an inconsistent snapshot (in other words, non-conflicting rows are read as of the statement's snapshot, but conflict resolution is done by
reading and attempting re-execution/ locking on the latest version of the row).

YSQL supports the Read Committed isolation level, and its behavior is the same as that of PostgreSQL's Read Committed level (section 13.2.1) ¢£.

II

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/

g yugabyteDB

Avoid deadlocks in Read Committed

transactions
SELECT behavior without explicit
locking

UPDATE behavior

© 2022 - All Rights Reserved 28

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/

Pessimistic locking

TN
\

© — All Rights Res

Optimistic locking

On conflict, roll-back one of the conflicting txns based on priority

Deadlocks are avoided since transactions never wait

Aborts transactions unnecessarily in contentious workloads

Behavior is incompatible with PostgreSQL

g yugabyteDB © 2022 - All Rights Reserved 30

Pessimistic locking

On conflict, wait for the blocking transaction to commit or rollback

Deadlocks are detected among waiting transactions

Aborts transactions minimally in contentious workloads

Behavior is compatible with PostgreSQL

g yugabyteDB © 2022 - All Rights Reserved 31

»ss |

Along with pessimistic locking, comes the problem of O '

detecting distributed deadlocks.

g yugabyteDB © 2022 - All Rights Reserved 32

any

Deadlock Detection

Detection happens quickly with detector triggering 1s after conflict

g yugabyteDB © 2022 - All Rights Reserved 33

Deadlock Detection

Detection happens quickly with detector triggering 1s after conflict

Detection is guaranteed once a deadlock is created

g yugabyteDB © 2022 - All Rights Reserved 34

Deadlock Detection

Edge Chasing Algorithm

Chandy and Misra, 1982 - A Distributed Algorithm for Detecting Resource '
Deadlocks in Distributed Systems

https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDead
lock.pdf

Wait-for graph is formed by considering transactions as nodes and
waiting-status as a directed edge

Probes are sent between transaction coordinators to detect cycles
in this graph

g yugabyteDB © 2022 - All Rights Reserved 35

https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDeadlock.pdf
https://www.cs.utexas.edu/users/misra/scannedPdf.dir/ResourceDeadlock.pdf

Deadlock Detection

g yugabyteDB © 2022 - All Rights Reserved 36

Deadlock Detection

\

\
/

g yugabyteDB © 2022 - All Rights Reserved 37

Deadlock Detection

g yugabyteDB © 2022 - All Rights Reserved 38

Deadlock Detection

probe id
T1->T2

g yugabyteDB © 2022 - All Rights Reserved 39

Deadlock Detection

probe id
T3 ->T1

g yugabyteDB © 2022 - All Rights Reserved 40

Deadlock Detection

robe id
T3 ->T1

g yugabyteDB © 2022 - All Rights Reserved 41

Deadlock Detection

Detection happens quickly with detector triggering 1s after conflict

Detection is guaranteed once a deadlock is created

Overhead is optimal requiring constant additional memory and only one probe per
conflicting transaction. Probes could trigger many RPCs depending on wait-for graph

g yugabyteDB © 2022 - All Rights Reserved 42

Additional Resources

View our docs page for Read Committed isolation level

View our spec document for pessimistic locking

See our roadmap for this area, more exciting ltems coming your way!

g yugabyteDB © 2022 - All Rights Reserved 43

https://docs.yugabyte.com/preview/architecture/transactions/read-committed/
https://github.com/yugabyte/yugabyte-db/blob/master/architecture/design/pessimistic-locking-functional-spec.md
https://github.com/yugabyte/yugabyte-db/issues/5683

™
7
i Y

‘ L7 yugabyteDB

@)
i Y
@)

Thank You

Join us on Slack: yugabyte.com/slack

Star us on Github:
github.com/yugabyte/yugabyte-db

44

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

