
© 2022 – All Rights Reserved

1

Discover the Power and
Flexibility of Async Replication

xCluster Replication

© 2022 – All Rights Reserved 2

Wei Wang

Yugabyte

Michael Spiering

Yugabyte

© 2022 – All Rights Reserved

1. Single Region, Multi-Zone

Availability Zone 1

Availability Zone 2 Availability Zone 3

Consistent Across Zones
No WAN Latency But No

Region-Level Failover/Repair

2. Single Cloud, Multi-Region

Region 1

Region 2 Region 3

Consistent Across Regions
with Auto Region-Level

Failover/Repair

Synchronous Replication: Resilient and strongly consistent

All scenarios require a odd number of failure domains to ensure a quorum can be established

Read-only, eventually consistent
reads can be achieved through:

● Follower reads
● Read Replicas

Writes, however, are always
consistent (CP database)

● Speed of light is an issue for
multi-region deployments

© 2022 – All Rights Reserved

Cluster 1 in Region 1

Consistent Across Zones
No Cross-Region Latency for Both Writes & Reads

App Connects to Cluster in Region 2 on Failure

Cluster 2 in Region 2

Consistent Across Zones
No Cross-Region Latency for Both Writes & Reads

App Connects to Cluster in Region 1 on Failure

Bidirectional
Async Replication

Availability Zone 2 Availability Zone 3 Availability Zone 2 Availability Zone 3

Availability Zone 1 Availability Zone 1

Multi-Cluster Deployments with xCluster Replication

4

© 2022 – All Rights Reserved

Use Cases

5

xCluster

© 2022 – All Rights Reserved

Supported Topologies

tablet 1’

Active / Passive setup
● Ideal for DR purposes
● Low latency reads on both source and sink

clusters
● Eventually consistent and timeline consistent
● Live migrate clusters, eg AWS -> GCP

Active / Active setup
● Solves 2 DC problem
● Low Latency reads and write on both clusters
● Last data written wins
● All the trigger/primary key concerns from

Gotchas

Region 1 Region 2

© 2022 – All Rights Reserved

Major Financial Services Company

~70ms

US-East-1a

US-East-1b US-East-1c

1ms
US-West-2a

US-West-2b US-West-2c

1ms

● 2 Data Centers on opposite coasts
● Writes have locality of data (users

are always tied to a particular DC)
● Both reads and writes must be fast

● Either DC should be able to handle
all traffic for DR purposes.

© 2022 – All Rights Reserved

How Does It Work?

8

xCluster

© 2022 – All Rights Reserved

First, some terminology: TABLET

tablet 1’

● User tables sharded into tablets

● Tablet = group of rows

● Sharding is transparent to user

● Assume 3-nodes across zones

● 3 copies of the data => 1 leader,

2 followers

© 2022 – All Rights Reserved

Cluster 1 in Region 1 Cluster 2 in Region 2

Async Replication

Availability Zone 2 Availability Zone 3 Availability Zone 2 Availability Zone 3

Availability Zone 1 Availability Zone 1

xCluster Async Replication

10

T1

T2

T3

T1

T3
T2

● Topologies of source and sink clusters can be different
● Each tablet is replicated independently
● Writes are batched together for efficient transmission to the sink cluster.
● Destination pulls records from the WAL file on the source cluster and puts them straight into the DocDB storage layer.

○ Hence: TRIGGERS are not recommended – they will not be fired on the destination

© 2022 – All Rights Reserved

How XCluster Async Replication works - Setup

Target cluster starts replication process

1. Validate schema
2. Get source tablet information
3. Setup a poller on target for each

source tablet
4. Source computes records not yet

sent to target and sends them to
target

5. Target poller sends data to the right
tablets

6. Target tablets replicate the data
using RAFT

Schema Creation

Run DDL on both
clusters

Setup replication on target
cluster

Use the YBA interface that
manages the target cluster
to setup replication.

© 2022 – All Rights Reserved

How XCluster Async Replication works - Steady state operation

Source Cluster Target Cluster

L L
1: GetChanges(tablet, opId)

Tablet Stream Checkpoint
OpID

Last Replicated
Time

CDC_STATE

4: Apply(records) R

R
5: Replicate(records)

L

R

R
5: Replicate(records)

WAL

3: ComputeChanges(opId)

2: RecordCheckpoint(opId)

© 2022 – All Rights Reserved

How XCluster Async Replication works - Setup with existing data in source

Target cluster starts replication process

1. Validate schema
2. Get source tablet information
3. Setup a poller on target for each

source tablet
4. Source computes records not yet

sent to target and sends them to
target

5. Target poller sends data to the right
tablets

6. Target tablets replicate the data
using RAFT

Bootstrap source and
target

1. Backup data on
source and record
the checkpoint

2. Restore the backup
on target

Setup replication on target
cluster

Use the YBA interface that
manages the target cluster
to setup replication.

© 2022 – All Rights Reserved

What are the problems today?

14

xCluster

© 2022 – All Rights Reserved

Gotchas!

15

● Active <> Active not production ready for some use cases due to challenges of supporting transactional atomicity(Last Writer Wins)

○ 2DC, Active <> Passive is well supported topology

● Avoid setting up replication using CLI if both universes running on the same platform

○ Giving maturity of platform functionalities such as automatic bootstrapping (2.15.3.0-b64 or later)

○ Inability to monitor via the platform if configuring it via CLI

● It is highly recommended to use the same version of YBDB to set up xCluster replication

○ For a software upgrade, Pause replication, the target universe should be upgraded first.

● Avoid Sequences / unique indexes / triggers

● Current day 2 operation challenges such as

○ DDL changes are not automatically replicated; No support of drop table, truncate table

○ We do not have a way to alert the user if replication is fully broken: plan to expose a API

○ Potential issues with encryption-at-rest, TLS, etc

○ Bootstrapping - backup and restore based. KMS limitations, full database restore

© 2022 – All Rights Reserved

2.17 enhancements

16

xCluster

© 2022 – All Rights Reserved

xCluster Transactionality

17

One transaction might update records in 2 different tablets

begin transaction
update A
update B

commit transaction

Async Replication

A

B

A’

B’

Source sees either:
● Changes to A and B
● Changes to neither A nor B

Destination can see:
● Changes to A and B
● Changes to neither A nor B
● Changes to A but not to B
● Changes to B but not to A

Source
Cluster

Destination
Cluster

© 2022 – All Rights Reserved

xCluster Global Ordering

18

Non-transactional updates imply a certain ordering:

update A
update B

Async Replication

A

B

A’

B’

Source can see:
● Changes to neither A nor B
● Changes to A but not B
● Changes to A and B

Destination can see:
● Changes to A and B
● Changes to neither A nor B
● Changes to A but not to B
● Changes to B but not to A

Source
Cluster

Destination
Cluster

© 2022 – All Rights Reserved

Other Improvements

19

● Focus on failing to secondary data center in active/passive setup
○ Planned failover: RPO should be zero
○ Unplanned failover: RPO will be low but non-zero
○ New yb-admin commands for Transactional Consistency and DR Workflows

1. Change_xcluster_role (ACTIVE vs STANDBY)
2. Wait_for_replication_drain
3. Get_xcluster_safe_time

○ get_xcluster_estimated_data_loss

Future:
● Automatic DDL Focus:

○ All schema modifications to existing objects automatically get applied on both sides
○ All new objects get automatically enlisted into replication

https://docs.google.com/document/d/1pcMm7c6I-xQKDmZv_hnwYj8XWhERE4jZkQwRazP4sek/edit#

© 2022 – All Rights Reserved

Demo

20

xCluster

© 2022 – All Rights Reserved

Setting up and Operating xCluster Demo: DR Use Case

21

XCluster Role - ACTIVE XCluster Role - STANDBY
XCluster SafeTime - Consistent time at which Reads
are served on a standby universe

Consistency level - database (Cross-tablet consistency), tablet (similar to today)

gFlag:
enable_replicate_transaction_status_table

gFlag:
enable_replicate_transaction_status_table

1

2

3

© 2022 – All Rights Reserved

xCluster Async Replication - Process Flow

22

● Call yb-admin.setup_universe_replication for n tables from the target to set up the replication stream
○ Tablet mapping is created(target tablet -> source tablet)
○ Leader of target tablet pulls from the source tablet using CDC_Poller, GetChanges(tablet, opid) polling

API (called per tablet)
○ Source side computes all changes since last pull using (OpID) and returns the target
○ Target tablet server applies changes to local rocksdb
○ # of tablets between source and target side can be different
○ Each source tablet uses its own WAL to server the polling request from the target
○ WAL is retained up to the OpId that is needed with a max of 24 hours by default (configurable)
○ The source side maintains a system table CDC_STATE to store metadata about streams
○ Other yb-admin commands: list_cdc_streams, get_universe_config,delete_cdc_stream

Tablet Stream Checkpoint OpID LastReplicatedTime

CDC_STATE

© 2022 – All Rights Reserved 23

Thank You
Join us on Slack:
yugabyte.com/slack

Star us on Github:
github.com/yugabyte/yugabyte-db

https://www.yugabyte.com/slack
https://www.github.com/yugabyte/yugabyte-db

© 2022 – All Rights Reserved

Other Improvements

25

● DDL improvements
○ Support for safely performing ALTER table operations on both source/target without any loss

of data or replication errors [Github 11017]
○ Integration of xCluster with Index Backfill [Github 7613]

● “Wait for Replication Drain” API
○ Allows safe cutover from source to target with no data loss [Github 10978]

● Expose APIs to better monitor replication health

● Handling of replication between tables with the same name in different schemas

© 2022 – All Rights Reserved

Cluster 1 in Region 1 Cluster 2 in Region 2

Async Replication

Availability Zone 2 Availability Zone 3 Availability Zone 2 Availability Zone 3

Availability Zone 1 Availability Zone 1

xCluster Async Replication Transactional Atomicity

26

T1

T2

T3

T1

T3
T2

Read (T1)

● T1, T2, T3 happen in order on Cluster 1.
● T1, T3 reach cluster 2.
● A read on Cluster 2, reads data as of T1 even though T3 is present already in Cluster 2 as T2 has not arrived

