

End-to-End Stack

Harnessing YugabyteDB and Ecosystem Solutions to Build Globally Scalable Apps

Yogi Rampuria

Principal Solution Engineer, Yugabyte

Channels & Alliances - Asia South & India

@yogendra | yogendra.me | github.com/yogendra

#Singapore #OSSEnthusiast #CoderSince90s #K8s #Java #DevEx

Why are we here?

Market Trends / On the Rise
Cloud Native Applications
Cloud Adoption
Multi-Cloud and Multi-Region Architectures

CNA + Container + Kubernetes + Multi-Cloud = 🐯

"Why is it working?" 2

So,

Let's go to the beginning..

14 Billion Years Ago...

It really starts with..

An App

What is an Application/App?

App on Computer/Mobile?
Software?
A piece of Code?

What is an Application/App?

App on Computer/Mobile?
Software?
A piece of Code?

How do you run it?

And there is a bit More...

And never alone

And it runs on a platform

With some supporting services

Lets not forget Site

And there is more than one

Why run a DB in K8s?

Better resource utilization

- Reduce cost with better packing of DBs
- Useful when running large number of DBs
 - Multi-tenant applications with a DB per tenant
 - Self-service private DBaaS
- But watch out for noisy neighbors
 - Perf issues when running critical production workloads

Resize pod resources dynamically

- Dynamically change CPU, memory
- Embrace Automation done without incurring downtime
 - Scale DB with workload
 - Automate to scale up automatically


```
$ kubectl apply -f cpu-request-limit.yaml
```

\$ kubectl apply -f
memory-request-limit.yaml

Portability between clouds and on-premises

- Infrastructure as code
- Works in a similar fashion on any cloud
 - Cloud-provider managed k8s (AKS, EKS, GKE)
 - Self-managed k8s (public/private cloud)
- But not perfectly portable
 - Need to understand some cloud specific constructs (Example: volume types, load balancers)

Out of box infrastructure orchestration

- Pods that fail are automatically restarted
- Pods are resized across nodes in cluster
 - Optimal resource utilization
 - Specify policies in code (example: anti-affinity)
- Loss of some flexibility
 - Cannot make permanent changes on pods

Automating day 2 operations

- Robust automation with CRDs (Custom Resource Definitions) or commonly referred as 'K8s Operator'
- Easy to build an operator for ops
 - Periodic backups
 - DB software upgrades

- Potential for data loss?
- Mitigation: use a distributed DB

Why NOT run a DB in K8s?

Greater chance of pod failures

- Pods fail more often than VMs or bare metal
- Many reasons for increased failure rate
 - Process failures config issues or bugs
 - Out of memory and the OOM Killer
 - Transparent rescheduling of pods
- Will pod failures cause disruption of the service or data loss?
 - Mitigation: use a distributed DB

Data loss likely if local storage used by pod

Local vs persistent storage

- Local storage = use local disk on the node
 - Not replicated, but higher performance
 - Data not present in new pod location
- Persistent storage = use replicated storage
 - Data visible to pod after it moves to new node
 - What to do for on-prem? Use software solution (additional complexity)
- Mitigation: use a distributed DB

Pod sees a new, empty disk (Disk 3) after move with local storage

Need for a load balancer

- Restricted cluster ingress in k8s
 - If app not on same k8s cluster, needs LB
- Needs load balancer to expose DB externally
 - Not an issue on public clouds use cloud-provider network LBs
 - But there may be per-cloud limits on NLBs and public IP address limits
- Bigger problem on-prem with hardware based load balancers (Example: F5)

Networking complexities

- Two k8s clusters cannot "see" each other
- Network discovery and reachability issues
 - Pods of one k8s cluster cannot refer and replicate to pods in another k8s cluster by default
- Mitigation #1: use DNS chaining today (operational complexity, depends on env)
- Mitigation #2: use service mesh like Istio (but lower performance - HTTP layer vs TCP)

Video: Kubecon EU 2021 - Building the Multi-Cluster Data Layer

Run Distributed SQL on Kubernete

Running a Distributed SQL DB in k8s (YugabyteDB)

- Better resource utilization
- Resize pod resources dynamically
- Portability (cloud and on-premises)
- Out of box infrastructure orchestration
- Automate day 2 DB operations

- Greater chance of pod failures
- Local storage vs persistent storage
- Need for a load balancer
- Networking complexities
- Operational maturity curve

YugabyteDB on Kubernetes

Common Architecture - Active - Passive / Prod - DR Setup

- All users are served from single site
- Failover Failback
 - Hours to normalcy
- DNS or GSLB for Application failover
- State/Data replication technology
- Manual actions
 - Error prone
- Systems and Apps are "Pets"

Cloud Native Architecture: Active - Active

Gateway - GraphQL | API Gateway | Gateway API | Ingress | CDN

<u>Applications</u> - Monolithic Applications | Microservices | Containers

<u>Services</u> - YugabyteDB | Messaging | Eventing | Files | Object Stores

Runtimes - Kubernetes | VM | PaaS

<u>Infrastructure</u> - Compute | Storage | Networking

Site 1 Site 2

And Evolving Personas

And Evolving Personas

CI/CD & DevOps => FTW

Demo #1: Inner Loop

Create an application
Connect to Database
E2E testing with Database

https://github.com/yogendra/yb-e2e-demo/

And Evolving Personas

Let's Add One More Site - Just for Fun

Demo #2 - Target Architecture

YugabyteDB on Multi-Kubernetes

Multi Cluster Service / Submariner / Service Mesh

Demo #2: Outer Loop

Provision Cloud Regions (3 regions)
Deploy Database Services
Deploy Application and Configure

https://github.com/yogendra/yb-e2e-demo/

Thank You

Join us on Slack: yugabyte.com/slack

Star us on Github: github.com/yugabyte/yugabyte-db

